
Can Short�eries Be Even Shorter?
Peilin Yang, Hui Fang
{franklyn,hfang}@udel.edu

Department of Electrical and Computer Engineering
University of Delaware

ABSTRACT
It is well known that query formulation could a�ect retrieval perfor-
mance. Empirical observations suggested that a query may contain
extraneous terms that could harm the retrieval e�ectiveness. �is is
true for both verbose and title queries. Given a query, it is possible
that using its subqueries can generate more satisfying search results
than using the original query. Although previous studies proposed
method to reduce verbose queries, it remains unclear how we could
reduce title queries given the short length of the title queries. In
this paper, we focus on identifying the best performed subqueries
for a given query. In particular, we formulate this problem as a
ranking problem, where the goal is to rank subqueries of the query
based on its predicted retrieval performance. To tackle this problem,
we propose a set of novel post-retrieval features that can be�er
capture relationships among query terms, and apply a learning-
to-rank algorithm based on these features. Empirical results over
TREC collections show that these new features are indeed useful
in identifying the best subqueries.

CCS CONCEPTS
•Information systems →�ery representation;�ery refor-
mulation;
ACM Reference format:
Peilin Yang, Hui Fang. 2017. Can Short �eries Be Even Shorter?. In
Proceedings of ICTIR’17, October 1–4, 2017, Amsterdam, �e Netherlands, ,
8 pages.
DOI: h�ps://doi.org/10.1145/3121050.3121056

1 INTRODUCTION
�e retrieval performance is closely related to the quality of a query.
Not all terms in a query are equally important. Given a query, it
is possible that its subqueries, i.e., the ones generated by removing
terms from the query, can lead to be�er search results.

�e problem of query reduction has been studied intensively for
verbose queries (usually long, more than 6 terms, e.g., queries that
are formulated based on the description of TREC topics) [1, 8, 13].
Previous studies showed that although a subquery does not always
perform as well as the original query, the best subquery could
be much be�er – 23% improvement in terms of MAP for verbose

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ICTIR’17, October 1–4, 2017, Amsterdam, �e Netherlands
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4490-6/17/10. . .$15.00
DOI: h�ps://doi.org/10.1145/3121050.3121056

queries [1, 13]. However, reducing keyword queries (usually short,
2-6 terms in total, e.g. queries that are formulated based on the
title of TREC topics) has drawn less a�ention than its counterpart.
Previous study [8] showed that title queries can also be reduced to
obtain be�er performances on ClueWeb collection. We made similar
observations based on the results on other TREC collections too.
Table 1 compares the performance when using the original keyword
queries with those using the best performed subqueries. Although
the table only contains the queries with length 3, it can be seen that
the performance of using the best subqueries has more than 10% of
gain in terms of the e�ectiveness. It is clear that reducing keyword
queries could lead to be�er performance, but the problem is how to
identify the best-performed subquery for a given query when we
do not have any information about the relevance judgments.

Reducing keyword queries is a challenging task. Given a key-
word query is already very short, how can we ever remove terms
from that? One simplest solution would be to remove the terms
based on their IDF values. Unfortunately, it does not work well.
Let us consider query “pheromone scents work” (from WT10G).
Among all the query terms, “work” has the lowest IDF. However,
removing “work” from the query would not achieve our goal since
the best-performed subquery for this query is “pheromone work”.
Similarly, other features, such as mutual information and clarity
score [13] are not as useful as what they are supposed to be (more
details in Section 3).

In this paper, we focus on the problem of identifying best-performed
subquery for a given keyword query. In particular, we formulate
the problem as ranking all the subqueries of a keyword query based
on their predicted performance. To tackle this problem, we propose
a set of novel features that can be�er capture the relations among
query terms, and then apply a learning-to-rank algorithm to rank
the subqueries based on these new features as well as some existing
ones.

All the proposed new features are post-retrieval ones, meaning
that they are computed based on the retrieval results. �ese features
are designed to capture di�erent relationships among query terms
from di�erent aspects: query term proximity, the aggregated rank-
ing scores of query terms, and the compactness and position of term
tensors. Speci�cally, term proximity based features are designed
to capture the intuition that some query terms should be viewed
as phrases as opposed to individual terms. Let us consider query
“family leave law”. Its best subquery is “family leave”, which is a law
code. And only when the two terms occur next to each other and
in the right order in a document, we are sure that the document
is relevant. To capture this intuition, we propose to compute the
statistics of the ranking scores that are computed based on term
dependency model [14] for each subquery. We also leverage the
correlations between these ranking scores with the ranking scores
of the original query for this category of features. Furthermore, we

Table 1: Comparison of the MAP between using original
queries and optimal subqueries. Only queries of length 3
are shown and the ranking function is BM25

Collection Original Upper Bound Di�.
Disk12 0.2597 0.2880 +10.9%
Disk45 0.2399 0.2772 +15.5%

AQUAINT 0.2107 0.2426 +15.1%
WT2G 0.3285 0.3580 +9.0%
WT10G 0.1720 0.2051 +19.2%
GOV2 0.3060 0.3221 +5.3%

proposed another set of term score based features that are designed
to measure the balance between TF and IDF weighting [7]. �ese
features are computed based on di�erent ways of aggregating the
term scores of individual query terms. �e assumption is that these
statistics could capture the key properties of the best subquery at
the term score level and thus are useful. Finally, we proposed a set
of features based on the compactness and positions of the term score
tensors. For this set of features , we investigate the spatial properties
of the term scores. We view the term scores from top ranked docu-
ments as tensors in the multi-dimensional space and then compute
the compactness and the position of the tensors cluster.

Empirical results show that the proposed new features are ef-
fective in identifying the best-performed subquery. Moreover, we
intensively analyze the important features by comparing the per-
formance di�erence between the subset of features and all features.
�e results validate the utility of the proposed new features.

2 IDENTIFYING BEST SUBQUERY
We now discuss how to identify the best-performed subquery for a
given keyword query.

2.1 Problem Formulation
Given a query, it is possible that some of the terms in the query are
not informative and including them in the query could harm the
performance. �us, the goal of best-performed subquery identi�ca-
tion is to identify the best query representation by using the terms
in the original query. �e solution could be the original query or
part of the original query.

�e best-performed subquery identi�cation problem can be for-
mally de�ned as follows. Given an arbitrary queryQ = {t1, t2, ..., t |QL |}
where ti is the ith term inQ and |QL| is the length (number of terms)
of the query, let PQ denote the power set of Q , which includes all
possible subqueries ofQ . Let f be a retrieval function used for rank-
ing the documents in the collection for any query in P . Letm(P , f)
denote a metric for the ranking e�ectiveness of retrieval function f
using query P . �e best-performed subquery identi�cation problem
aims at �nding a subquery P∗ = argmaxP ∈PQ m(P , f).

We formulate the best-performed subquery identi�cation prob-
lem as a subqueries ranking problem. �e ranking is based on the
predicted performance of the subqueries without prior knowledge
of relevance. More speci�cally, given a query, we will generate all
the subqueries and rank the subqueries based on their predicted
retrieval performance. We leverage existing learning-to-rank algo-
rithm such as LambdaMART [3] and focus on feature identi�cation
in our study.

Table 2: Notations and Explanations

Notations Explanations
Q = {t1, t2, ..., t |QL | } �e original query and its terms
|QL | �ery length

PQ = {q1, q2, ..., qi , ... }
�e power set of Q which
contains all subqueries

q
�e general notation for any
subquery including the
original query.

c Ranking list cuto� position
di Document i in the ranking list
dsq,i Ranking score of document

i for query q

Lq,c (f) = {d1, ..., dc }
Ranking list of q using model f
cuto� at c .

®SLq,c (f) = {dsq,1, ..., dsq,c } Ranking scores in Lq,c (f).
®tq,di (f) = {ft1,di , ..., ftn ,di }

Terms scores of di for query q
computed by model f . n = |QL |.

®T Lti ,c (f) = {fti ,d1, ..., fti ,dc }T Column term scores for ti .
MLq,c (f) = { ®tq,d1 (f), ..., ®tq,dc (f)} Terms scores matrix of Lq,c (f).

д(®x), h(®x) ∈ <

Feature function. One of MIN,
MAX, MAX-MIN (di�erence),
MAX/MIN (division),
SUM, MEAN,
STD (standard deviation),
GMEAN (geometric mean)

2.2 Subquery Ranking Features
2.2.1 Terms Relationship Features. We introduce the newly pro-

posed features that can be�er capture the relations among query
terms – the motivation behind them as well as the detailed steps
to compute them. �ese features are designed to capture di�erent
relationships among query terms from di�erent aspects: query term
proximity, the aggregated ranking scores of query terms, and the
compactness and position of term tensors. �e above mentioned
features are post-retrieval features where we explore the scores in
the ranking list of the subquery and generate the features from that.
�e variables and the notations that will be used in the following
sections are summarized in Table 2.

TermProximity Based Features (PXM)When identifying useful
subqueries, it is important to consider the relations among terms
in the subqueries. One of the important term relations is phrases.
Intuitively, a subquery containing a phrase makes more sense than
the combination of a few random terms. Let us consider an example
query “family leave law”. It is clear that its subquery “family leave”
and “family law” are be�er choices than “leave law”.

To distinguish subqueries with phrases from those without, we
proposed to utilize the statistics of the ranking results when using
the term dependency model [14]. When ranking documents using
dependency model, the documents that have exact or close match-
ing with the subquery will be favored. �us, when a subquery is
a phrase, the scores of the top-ranked results could have larger
variance since some documents have the exact matching while
others do not. On the contrary, when a subquery is not a phrase,
the score variance is o�en small since few documents would have
the exact matching. Clearly, we should use the statistics of ranking
results based on the term dependency model as features for the

subquery ranking. More speci�cally, we �rst rank the documents
in the collection using one of the following term proximity models:
unordered window model (UW), ordered window model (OW) and
the combination of the two models (UWOW). �e window parame-
ter (i.e. terms must appear with at most how many terms between
each) wd is set to 4 · (|QL| − 1). For example, a sample query of
UWOW using Indri query language is
#combine(#uw4(family leave) #ow4(family leave)).
A�er ge�ing the results, we extract high level statistics from the
document scores at cuto� c as the features by applying the feature
functions h(®x) to the scores. �e feature function h is de�ned in
Table 2 and it consists of a set of statistical functions that can be
applied to a vector of values such as summation and standard de-
viation. �e use of feature function was shown to be bene�cial in
order of aggregating the raw values in the previous studies [2, 5].
Formally, the features can be computed as follows:

PXM(w)h = h(®SLq,c (w)) (1)

wherew ∈ UW ,OW ,UWOW and ®SLq,c (w) is the documents scores
vector of the term proximity model.

Another way to identify the phrase-based subquery is to examine
how similar the search results are when using the term dependency
model and when using the basic retrieval models. By comparing
the the scores in the two ranking lists we might have more insights
about the subqueries. Presumably, if a speci�c subquery performs
much be�er than the original query because of the subquery is
the key phrase in the original query, the scores of the two rank-
ing lists should be di�erent from each other. Take our previous
subquery “family leave” for example, our method assumes that
this subquery (actually the term proximity model) should have
di�erent ranking scores from the original query “family leave law”
ranking scores and we are expected to capture such feature. Based
on the above reasoning we measure the correlation between the
documents scores of the term proximity model of the subquery and
the regular ranking scores of the original query Q using Kendall's
Tau (τB) and Pearson's r as two additional features. Formally, the
correlation-based PXM features can be computed as:

PXM(w)corr = Corr (®SLQ,c (w), ®SLqi ,c (w)) (2)

where Corr ∈ {τB , ρ}.

Term Score Based Features (TS)
For this set of features, we continue to explore the ranking list

of the subqueries – the scores of individual query terms instead
of the score of the document. �e intuition of TS is originated
from the term frequency constraint and the term discrimination
constraint from previous work [7]. �e constraint essentially in-
troduces the balance between document term frequency (TF) and
inverted document frequency (IDF). �is really inspires us that
there should be some interesting properties in the term score of
top ranked documents. Instead of separately considering the TF
and IDF, we choose to directly look at the individual term score
computed by any ranking function that has reasonable TF and IDF
components (e.g. BM25) for two reasons: (1) the ranking list is
determined by the scores computed by the ranking function, and
(2) the ranking function has the TF and IDF components and thus it
already naturally adopts the TF-IDF constraint [7]. We wonder, for

Figure 1: Individual term scores. Term scores are computed
using BM25 model. Colors of the dots are the probability of
relevant document at that point. Axis labels show the IDF

values computed by loд N
df .

0.0 2.5 5.0 7.5 10.0

lifestyles:4.37

0

2

4

6

8

10

c
u
lt

:5
.5

5

325:cult lifestyles

0.2

0.4

0.6

0.8

1.0

(a) AQUAINT QID:325

0 2 4

home:1.78

0

1

2

3

4

5

s
c
h
o
o
li
n
g
:2

.3
6

394:home schooling

0.2

0.4

0.6

0.8

1.0

(b) AQUAINT QID:394

instance, do the top ranked documents have more balanced term
scores or do they have highly skewed term scores? Or is the perfor-
mance of subquery related to the minimum of the term scores in the
top ranked documents? Figure 1 illustrates the intuition: the two
sub�gures are the term scores computed by BM25 model for the
two queries for TREC keyword topics. From the �gures we �nd two
distinct pa�erns: for query “cult lifestyle” its relevant documents
have higher probability along the y-axis indicating that “cult” is
more important than “lifestyle” for this query. But for query “home
schooling” the term scores are more balanced.

�e TS features are then computed as follows: we �rst generate
the ranking list ®Lq,c (f) for subquery q using any ranking function
that has reasonable TF and TD components. For each document
di in ®Lq,c (f), we compute the score for each individual term. �is
would generate the term scores vector ®tq,di (f) fordi . We then apply
the feature function h to ®tq,di (f) to get the aggregated statistics
for di as h(®tq,di (f)). �e result of this step is a list of statistics with
each element corresponding to one document. We then apply the
feature function д again to each column of the previously generated
list h(®tq,di (f)) to generate the �nal TS features. Formally, TS is
computed as:

TS(f ,h,д) = д(h(®tq,di (f))) (3)

For example, TS(BM25,MEAN , STD) for query “home schooling”
�rst rank the documents in the collection using BM25 function and
then we compute the terms scores for “home” and “schooling” for
each document in the ranking list again using BM25 function. �e
average value of terms scores for each document in the ranking list
is then calculated and this results in a list of average values. Finally
the standard deviation of the average values is computed and the
value is served as the feature.

Compactness and Positions of Term Score Tensors (TCP)
Using document scores in the ranking list as query prediction

features has been proposed in the previous studies [17]. In their
work, the feature Normalized �ery Commitment (NQC), which is
essentially de�ned as the standard deviation of document scores
in the ranking list, was used as a post-retrieval feature to predict
the query performance. Larger deviation values were correlated
with potentially lower query dri�, and thus indicating the be�er

Figure 3: Terms scores (computed by BM25) of the top 50
ranked documents in the list. �e numbers in the titles are
theAverage Precision of the corresponding subquery. Green
dots are relevant documents and red dots are non-relevant
documents. For each query only the optimal subquery and
the original query are shown.

0 5 10 15

pheromone(8.87)

0

5

10

15

w
o
rk

(1
.4

7
)

pheromone work(0.7531)

pheromone(8.87)

0
5
10

15

sc
en

ts
(6

.3
5)

0

5

10
15

w
o
rk

(1
.4

7
)

0

1

2

3

pheromone scents work(0.3823)

(a) WT10G QID:530

0 2 4

family(2.58)

0

1

2

3

4

5

le
a
v
e
(2

.5
2
)

family leave(0.4679)

family(2.58)

0
2

4

le
av

e(
2.

52
)

0

2

4

la
w

(2
.1

9
)

2

3

4

family leave law(0.2725)

(b) ROBUST04 QID:648

e�ectiveness [17]. We also �nd the deviation and other statistics of
ranking scores are indeed useful. However, we focus on the term
level scores instead of document level scores.

Figure 3 shows two example queries from WT10G and RO-
BUST04 respectively. �e x-axis and y-axis are the term scores
computed by BM25 model and only the top 50 ranked documents
are included in the �gures. For both queries, the best subqueries
are the queries with fewer query terms, i.e. not the original query.
We �nd the similarity and di�erence for the chosen queries. First,
it can be seen that for both best subqueries the term scores from
top ranked documents are more compactly clustered. Second, the
two queries are di�erent in the sense that the term scores clusters
are located at the di�erent position in the two dimensional space.
Such di�erence indicates that for the best subquery the ranking
model has its own preference among query terms. For WT10G-530
“pheromone” receives much higher score. But for ROBUST04-648
both query terms receive similar scores. We name this category
of features as compactness and positions of term score tensors
since we intensively compute the all kinds of distances in the multi-
dimensional term space and the term scores from the documents

are essentially N dimensional vectors. We formally de�ne three
types of features in this category as follows:

• Tensor Compactness (TCP(TC)): �e average and the stan-
dard deviation of the distances for the tensors to their cen-
troid. �is feature captures the compactness of the tensors
cluster.

TCP(TC)µ =
∑
d ∈Lq,c (f) | | ®tq,di (f), ®tq,dµ (f)| |

c
(4)

TCP(TC)σ =
√√1

c

∑
d ∈Lq,c (f)

| | ®tq,di (f),TCP(TC)µ | |2 (5)

where f is BM25 ranking model, | |TA,TB | | is the distance
between tensor A and tensor B, ®tq,dµ is centroid of all the
tensors in the list which is essentially

®tq,dµ (f) =
(∑ ®TLt1,c (f)

c
,

∑ ®TLt2,c (f)
c

, ...

)
(6)

• Tensor Closeness to Diagonal (TCP(CDG)): �e distance
from the tensors centroid to the diagonal line in multi-
dimensional space, the average and the standard deviation
of the distances from the tensors to the diagonal line in
multi-dimensional space. �ese features capture part of
the position information of the tensors.

TCP(CDG)c = | | ®tq,dµ (f), ldд | | (7)

TCP(CDG)µ =
∑
d ∈Lq,c (f) | | ®tq,di (f), ldд | |

c
(8)

TCP(CDG)σ =
√√1

c

∑
d ∈Lq,c (f)

| | ®tq,di (f),TCP(CDG)µ | |2 (9)

where ldд is the diagonal line in the multi-dimensional
space and | |T , l | | is the distance from tensor T to line l .

• Tensor Closeness to Nearest Axis (TCP(CNA)): We com-
pute the distance from the tensors centroid to its nearest
axis, the average/standard deviation distance from the ten-
sors to the nearest axis in multi-dimensional space. TCNA
and TCD together de�ne the position property of the ten-
sors.

TCP(CNA)c = | | ®tq,dµ (f), lna | | (10)

TCP(CNA)µ and TCP(CNA)σ can be computed similarly
with Equation 8 and 9 with replacement of ldд to lna where
lna is the nearest axis to the centroid of all tensors and is
computed as:

lna = min
1≤i≤N

| | ®tq,dµ , li | | (11)

where li is ith-axis and N is the number of the dimensions.
We �rst computed the tensor closeness related features for the

terms in the subquery qi . Later on we found that it is bene�cial to
compute the tensor closeness related features for all the terms in
the original query Q . We apply this in all our experiments.

2.2.2 Basic Features. Besides the aforementioned features (PXM,
TS, TCP) we also applied other features proposed by others which
we will further refer as “basic features”.
Mutual InformationWe compute the mutual information by �rst
counting the co-occurrence of pairwise terms within N terms win-
dow in the matching documents. �e value is then normalized by
the product of the document frequencies of the two terms. Finally
we apply all possible feature functions h to the the pairwise terms
list. �e formula [13] is shown as follows:

MI = h(I (x ,y)) = h
(∑

O (x,y)
T

O (x)
T · O (y)T

)
(12)

where O(x ,y) is the number of times term x and term y co-occur
within a window of 50 terms in each matched documents, O(t) is
the total occurrence of term t in the collection and T is the total
number of terms in the collection.
Collection Term Frequency (CTF)

�e collection level term frequency of term t . �en we apply
feature function h to the list of CTFs as h(CTFq).
Document Frequency (DF)

�is is simply the document frequency for each term in the
subquery qi, j . �en we apply feature function h to the terms DFs
as h(DFq).
Inversed Document Frequency (IDF)

�e IDF here is the modi�ed loд(IDF) component used in the
modi�ed BM25 model [6]:

IDFt = loд
N + 1
DFt

where N is the number of documents in the collection. We then
apply the feature function h to the list of IDFt as h(IDFq).
MinDocumentTermFrequency (MINTF) andMaxDocument
Term Frequency (MAXTF)

MINTF is the minimum term frequency in the collection and is
computed as:

MINTFt = min
1≤i≤DFt

TFt,di

Similarly
MAXTFt = max

1≤i≤DFt
TFt,di

Final features are masked using feature function as h(MINTFq)
and h(MAXTFq).
Average Document Term Frequency (AVGTF) and Standard
Deviation Document Term Frequency (STDTF)

�is AVGTF applies to each individual term as:

AVGTFt =

∑DFt
i=1 TFt,di
DFt

�e STDTF is the standard deviation of AVGTFt . We apply feature
function masks to both features as h(AVGTFq) and h(STDTFq).
Average Document Term Frequency with IDF (AVGTFIDF)

We also incorporate the average document term frequency with
IDF to capture the term salience in the collection. Formally we
have:

AVGTFIDFt = AVGTFt · IDFt .

Table 3: Collections and�eries

Collection #qry |QL| = 2 |QL| = 3 |QL| = 4
Disk12 150 30(20%) 37(25%) 41(27%)
Disk45 250 75(33%) 147(59%) 17(7%)

AQUAINT 50 21(42%) 27(54%) 1(2%)
WT2G 50 24(48%) 23(46%) 0(0%)
WT10G 100 30(30%) 25(25%) 20(20%)
GOV2 150 44(29%) 65(43%) 35(23%)

Average Document Term Frequency with Collection Occur-
rence Probability (AVGTFCOP)

Similar to AVGTFIDF, we can also leverage the average collection
occurrence probability to capture the term salience in the collection.
Formally we have:

AVGTFCOPt = AVGTFt + µ · p(t |C)
where p(t |C) is the probability of term t occurred in the whole
collection and is computed asp(t |C) = CT Ft

|C | . |C | is the total number
of terms in the collection. We choose µ = 1000 based on the
preliminary results.

Simpli�ed Clarity Score (SCS)
�is feature was �rstly proposed by He and Ounis [9] to reduce

the computational cost of original query clarity and it was used as
a pre-retrieval query performance predicator. It is computed as:

SCSq =
∑
t ∈q

p(t |q) · loд2
p(t |q)
p(t |C)

where p(t |q) is the probability of term occurred in the query q.

3 EXPERIMENTS AND RESULTS
In this section we test our subquery ranking method using TREC
collections and topics. Wewill describe the details of the experiment
setup as well as the analysis of the results.

3.1 Experiment Setup
Weuse six TRECAd-hoc/Web collections in our experiments: Disk12,
Disk45 with ROBUST04 query set, AQUAINT News Collection with
ROBUST05 query set (ROBUST04 hard queries), WT2G, WT10G
and GOV2. �e title part of the query topics is used to test the
proposed subquery ranking method. Stopwords are removed from
both the collections and the queries and porter stemmer is applied
to the indexes. Table 3 lists the details of the collections and the
corresponding queries. As we can see that for most title topics their
lengths are within 2 to 4.

Since we are targeting the subquery ranking, single term queries
will not be included 1. Lots of features can not be directly applied
to the queries of length 2 such as MI since the subqueries are single
term query (other than the original query) and thus we separate the
queries by their lengths. In our experiments we focus on queries
of length 2 and 3 since even for queries of length 4 AQUAINT and
WT2G do not have enough queries for both training and testing.
When tested on one collection, queries from other 5 collections are
used together as training examples. All the features are normal-
ized to the range [0, 1] before being fed to the learning algorithm.
1[20] provided the performance upper bound for single term queries

LambdaMART is leveraged to rank the subqueries based on their
features and the average precision of the subquery is used as the
labels. Since LambdaMART favors the scalar labels we convert the
AP values to integers based on the relative AP values distribution.
�e relative AP values are the di�erences between the AP of a
subquery and the AP of the best subquery. �e mapping from AP
to integer should re�ect the relative importance of a query whose
best subquery performs much be�er than the rest of its subqueries.
We do not show the actual distribution due to space limit and the
rule of the mapping is:

Label (q) =

4, if APq = MaxAPOQ (q)
3, if MaxAPOQ (q) − APq ≤ 0.1
2, if MaxAPOQ (q) − APq > 0.1 ∩MaxAPOQ (q) − APq ≤ 0.3
1, if MaxAPOQ (q) − APq > 0.3 ∩MaxAPOQ (q) − APq ≤ 0.5
0, otherwise

where q is a subquery, OQ(q) denotes the original query of q, APq
denotes the average precision of the subquery q, and MaxAPQ
denotes the best AP of all the subqueries of Q . Basically we only
care about which subquery should be labeled as the best-performed
subquery thus the metric for LambdaMART is set to nDCG@1. �e
number of leaves for each tree is chosen from [2, 10] and the best
performance averaged among all collections is reported. When
generating the ranking list or compute the features like TS and
TCP where ranking function is needed we always apply BM25 2

with optimal parameter b (k1 = 1.2 always) set based on the results
reported in [21]. For performance metrics we report the accuracy
and MAP. We also compare the MAP of best-performed subqueries
identi�ed by our method with the theoretical upper bound.

3.2 Results of Subquery Ranking
�e results of subquery ranking (SR) using all features (mentioned
in Section 2.2 and normalized) for queries of length 2 and 3 are
listed in Table 4. �e accuracy is computed as the number of queries
whose best-performed subqueries are correctly identi�ed divided
by the total number of queries. MAP is computed by �rst picking
the best subqueries identi�ed by our model and then taking the
average precision for these best subqueries. It can be seen that
our SR method is be�er than using original query for most of the
collections. �e only exception is the GOV2 with queries of length
2 where the upper bound of the optimal performance is almost the
same with the performance of using original queries. We also �nd
that in general the our model performs be�er with queries of length
3 than the queries of length 2 in terms of percentage improvement.
�is is mainly because some features such as MI and PXM simply
can not be applied to the queries of length 2.

Figure 5 shows the length distribution of the best subqueries for
the queries of length 3. Basically it shows how many queries of
which its best subquery of length N. For example, for Disk12 there
are 6 queries whose best subquery are of length 1 and 23 of the
queries have their optimal subquery length of 2. From the �gure
we can see that in general our model has balanced number of best
subqueries in di�erent length and the numbers are very close to
the upper bound. We also �nd that our model slightly favors the

2 We also tried using Dirichlet language model and found using BM25 leads to slightly
be�er performance.

Table 4: Results of using all features. OG represents the orig-
inal query. SR represents our subquery ranking model. UB
represents the upper bound where the optimal subquery for
each original query is picked.

|QL | Collection Accuracy MAP
OG SR UB

2

Disk12 90% 0.3216 0.3309 0.3372
+2.89% +4.85%

Disk45 82% 0.2506 0.2566 0.2662
+2.39% +6.23%

AQUAINT 76% 0.2063 0.2091 0.2184
+1.36% +5.87%

WT2G 83% 0.2983 0.2983 0.3083
+0.00% +3.35%

WT10G 83% 0.2544 0.2663 0.2738
+4.68% +7.63%

GOV2 96% 0.2912 0.2911 0.2913
-0.03% +0.03%

3

Disk12 92% 0.2597 0.2833 0.2880
+9.09% +10.90%

Disk45 89% 0.2399 0.2643 0.2772
+10.17% +15.55%

AQUAINT 88% 0.2107 0.2323 0.2426
+10.25% +15.14%

WT2G 90% 0.3285 0.3380 0.3580
+2.89% +8.98%

WT10G 94% 0.1720 0.1949 0.2051
+13.31% +19.24%

GOV2 95% 0.3060 0.3113 0.3221
+1.73% +5.26%

Figure 5: Optimal Subqueries Lengths of queries with 3
terms. UB-1 denotes the number of ground truth best sub-
queries that has 1 term. SR-1 denotes the number of sub-
query rankingmodel ranked best subqueries that has 1 term.
UB-2, UB-3, SR-2, SR-3 follow the same notation.

Disk12 Disk45 AQUAINT WT2G WT10G GOV2
0

10

20

30

40

50

60

70

80

S
u
b
q
u
e
ry

 L
e
n
g
th

 C
o
u
n
ts

UB-1

SR-1

UB-2

SR-2

UB-3

SR-3

original queries as the number of best queries that have three terms
in our model is always larger than the values of the upper bound.

3.3 Feature Importance Analysis
In order to quantify the feature importance we set up another
experiment in which a subset of features are taken o� from the

the feature space and the performance di�erence between using all
features and using the subset of features is compared. �e results
are in Table 5 and we only show the results of queries of length 3
due to space limit.

In Table 5 there are two main sections: the top important fea-
tures from basic features are on the le� and the detailed feature
importance of terms relationship features on the right. For basic
features the features with the largest performance drops if they
were removed from the feature space are listed. For terms rela-
tionship features we present the details of PXM, TS and TCP by
showing the importance of the sub-features. Sub-features are the
features like PXM(w)h and TCP(CDG) which essentially re�ect
speci�c intuitions of the newly proposed features. First, we notice
that in general the terms relationship features have the perfor-
mance drop larger than -13%. Comparing to the top basic features
where two of them have the performance drop below than -13% it
validates the utility of these features. Second, Detailed collection-
wise performance drop indicates di�erent features contribute dif-
ferently for the collections. For example, AVGTFCOP is important
to AQUAINT while TS(SUM,SUM) is speci�cally useful for WT2G.
�ird, detailed analysis on terms relationship features reveal that:
for PXM PXM(w)h is be�er than PXM(w)corr . For TS features
TS(SUM,SUM) which is actually the sum of the top ranked docu-
ments scores (the �rst sum of all query terms equals to the document
score) is more vital. For TCP features the TCP(CNA) which captures
the position of the terms scores tensors and the TCP(TC) which
captures the tensors compactness are all important with perfor-
mances drops larger than -14% and this validates the utility of such
features.

4 RELATEDWORK
Reducing verbose queries to shorter queries has been intensively
studied in recent years [1, 13].

Most previous work involves in generating the features for either
the original query Q , the subquery q or groups of terms. Basically
there are several features categories:

Statistical Features TF-IDF based features are the most widely
used set of statistical features [2, 5, 10, 13, 16, 18] which include vari-
ous statistics such as collection TF, IDF, residual IDF, TF inmatching
Wikipedia titles, count of passages containing the subquery etc.
Other popular features include simpli�ed clarity score [5, 13] and
mutual information (MI) between query terms [11, 12, 19], domain
speci�c dictionaries based features such as whether the term indi-
cating a brand [19].

�ery Features �ery features are only based on the query itself
and no collection context is involved. Similarity Original �ery
measures the cosine similarity between TF-IDF vectors of each
subquery and the original query [13]. Presence of Stop Words
[1, 16] computes the ratio of stop words in subquery. IsRightMost
and IsLe�Most [19] are the features that capture the position of the
subquery in the original query.

TermDependency Features�ese features capture the dependen-
cies between query words. Park et al. [16] proposed four types of de-
pendencies among query terms: parent-child, ancestor-descendant,
siblings and c-commanding. �e �nal features include the number

of dependent clauses in the query; the ratio of the dependent term
pairs which have parent-child; ancestor-dependent, siblings, and
c-commanding in the query.

Post Retrieval Features �ese features are based on the ranking
results of subqueries. Typically, these features are expensive to com-
pute but they have been proven to be e�ective. �ery-document
Relevance Scores [1, 4] are the LambdaRank and BM25 scores of
top K documents, the click through counts of top K documents and
the page-rank scores of top K documents. �ery scope [13] of a
subquery is the size of the retrieved document set relative to the
size of the collection. Weighted Information Gain [2] is the di�er-
ence of the retrieval quality by comparing the state where only the
average document is retrieved to the state where the actual results
are observed. �ery dri� among results [5] is a set of features
which include the standard deviation of the ranking scores at 100
documents, the maximum standard deviation in the ranking list,
etc.

Our proposed features are all post-retrieval features and some
of them share the similar ideas with previous studies, e.g. term
proximity based features are inspired by the term dependency fea-
tures mentioned above. Di�erent from the previous work, we are
interested in the document score of the proposed term proximity
models and various properties of the term scores.

A large number of research e�orts have been made towards
combining the features using a classi�cation or a regression model.
�e classi�cation problem is equivalent to pick the best subquery
and it typically decides whether a term in the original query should
be included in the best subquery. �e regression problem is to
learn a weight for each term denoting its importance score or to
learn a weight for a sub-query; the top terms or the subquery with
highest weight is then chosen. RankSVM [1, 13, 15], decision trees,
AdaBoost, logistic regression [19] are popular classi�cation models
while random forests [1] is the most popular regression model. We
adopt the classi�cation model in our work where we apply the
LambdaMART to the features from all subqueries and the model
learns which subquery should be the best subquery.

5 CONCLUSIONS AND FUTUREWORK
�is paper focuses on the problem of identifying the best-performed
subquery for a given keyword query. Our main contribution lies
in the identi�cation of new features that can be used to predict
the performance of a subquery. �ese new features are designed
to capture di�erent types of term relations based on the retrieval
results, i.e., the proximity among query terms, the aggregated rel-
evance score of query terms, and the compactness and positions
of the term score tensors. �e newly proposed features together
with other basic features are used to train a LambdaMART model
to identify the best subqueries. Experiment results show that by
using the terms relationship features together with other popular
basic features could lead to promising performance in terms of
both accuracy and MAP. Detailed analysis on feature importance
validates the usefulness of our proposed features.

One of the limitations of the proposed features is related to
the computational cost. Since these features are post-retrieval,
it would inevitably increase the processing time and make it less
practical to apply this method to reduce the keyword queries online.

Table 5: Feature importance analysis for queries of length 3, the lower the better. �e lowest value of each collection is bolded.

Collection Top Basic Features Terms Relationship Features
AVGTFCOP SCS CTF PXM (w)h PXM (w)corr TS1 TS2 TS3 TCP(TC) TCP(CDG) TCP(CNA)

Disk12 0.2399 0.2497 0.2445 0.2535 0.2497 0.2532 0.2536 0.2536 0.2374 0.2492 0.2498
0.2833 -15.3% -11.9% -13.7% -10.5% -11.9% -10.6% -10.5% -10.5% -16.2% -12.0% -11.8%
Disk45 0.2292 0.2293 0.2224 0.2306 0.2354 0.2294 0.2313 0.2313 0.2330 0.2337 0.2267
0.2643 -13.3% -13.2% -15.9% -12.8% -10.9% -13.2% -12.5% -12.5% -11.8% -11.6% -14.2%

AQUAINT 0.1882 0.1999 0.2003 0.1974 0.1970 0.2029 0.1949 0.1949 0.1884 0.2005 0.1999
0.2323 -19.0% -13.9% -13.8% -15.0% -15.2% -12.7% -16.1% -16.1% -18.9% -13.7% -13.9%
WT2G 0.2561 0.2756 0.2853 0.2785 0.2760 0.2641 0.2191 0.2191 0.2828 0.2826 0.2795
0.3380 -24.2% -18.5% -15.6% -17.6% -16.3% -21.9% -35.2% -35.2% -16.4% -17.3% -18.3%
WT10G 0.1587 0.1643 0.1663 0.1454 0.1510 0.1671 0.1617 0.1617 0.1589 0.1435 0.1441
0.1949 -18.6% -15.7% -14.7% -25.4% -22.5% -14.3% -17.0% -17.0% -18.5% -26.4% -26.1%
GOV2 0.3040 0.2990 0.3029 0.2989 0.3025 0.2857 0.2927 0.2947 0.3046 0.3087 0.2990
0.3113 -2.3% -4.0% -2.7% -4.0% -2.8% -8.2% -6.0% -5.3% -2.2% -0.8% -4.0%
AVG 0.2294 0.2363 0.2370 0.2341 0.2364 0.2337 0.2256 0.2259 0.2342 0.2359 0.2329
0.2707 -15.5% -12.9% -12.7% -14.2% -13.3% -13.5% -16.2% -16.1% -14.0% -13.6% -14.7%

*

TS1: TS(MAX/MIN,SUM); TS2: TS(SUM,SUM); TS3: TS(GMEAN,MEAN)

We acknowledge this limitation and plan to study more e�cient
ways of computing features in our future work. However, we also
want to emphasize that one bene�t of the proposed new features
is to help us be�er understand the impact of term relations on the
retrieval performance. And these features might shed some lights
on developing more e�ective retrieval functions.

As for future work, there are two interesting directions. �e �rst
one is to continue on the features so that the identi�cation of the
best subquery can be further improved. For example, the semantic
features would be the promising perspective. Incorporating the
outside resources as the potential feature source would be another
choice. �e second direction is to leverage the terms relationship
features and the experimental results presented in this paper to
do more theoretical studies. For example, we could get inspiration
from the features and try to prove the performance upper bound of
multiple-terms queries.

Acknowledgments. �is research was supported by the U.S. Na-
tional Science Foundation under IIS-1423002.

REFERENCES
[1] N. Balasubramanian, G. Kumaran, and V. R. Carvalho. Exploring reductions for

long web queries. In Proceedings of the 33rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’10, pages 571–578,
New York, NY, USA, 2010. ACM.

[2] M. Bendersky and W. B. Cro�. Discovering key concepts in verbose queries. In
Proceedings of the 31st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’08, pages 491–498, New York,
NY, USA, 2008. ACM.

[3] C. J. Burges. From ranknet to lambdarank to lambdamart: An overview. Technical
Report MSR-TR-2010-82, June 2010.

[4] Y. Chen and Y.-Q. Zhang. A query substitution-search result re�nement ap-
proach for long query web searches. In Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technol-
ogy - Volume 01, WI-IAT ’09, pages 245–251, Washington, DC, USA, 2009. IEEE
Computer Society.

[5] R. Cummins, M. Lalmas, C. O’Riordan, and J. M. Jose. Navigating the user query
space. In Proceedings of the 18th International Conference on String Processing
and Information Retrieval, SPIRE’11, pages 380–385, Berlin, Heidelberg, 2011.
Springer-Verlag.

[6] H. Fang, T. Tao, and C. Zhai. A formal study of information retrieval heuristics.
In Proceedings of the 27th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’04, pages 49–56, New York, NY,
USA, 2004. ACM.

[7] H. Fang, T. Tao, and C. Zhai. Diagnostic evaluation of information retrieval
models. ACM Trans. Inf. Syst., 29(2):7:1–7:42, Apr. 2011.

[8] H. Fang and H. Wu. An exploration of query term deletion. 2011.
[9] B. He and I. Ounis. Inferring query performance using pre-retrieval predictors.

In In Proc. Symposium on String Processing and Information Retrieval, pages 43–54.
Springer Verlag, 2004.

[10] S. Huston and W. B. Cro�. Evaluating verbose query processing techniques.
In Proceedings of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’10, pages 291–298, New York, NY,
USA, 2010. ACM.

[11] G. Kumaran and J. Allan. A case for shorter queries, and helping users create
them. In HLT-NAACL, pages 220–227, 2007.

[12] G. Kumaran and J. Allan. E�ective and e�cient user interaction for long queries.
In Proceedings of the 31st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’08, pages 11–18, New York, NY,
USA, 2008. ACM.

[13] G. Kumaran and V. R. Carvalho. Reducing long queries using query quality
predictors. In Proceedings of the 32Nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’09, pages 564–571,
New York, NY, USA, 2009. ACM.

[14] D. Metzler and W. B. Cro�. A markov random �eld model for term dependencies.
In Proceedings of the 28th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 472–479. ACM, 2005.

[15] J. H. Park and W. B. Cro�. �ery term ranking based on dependency parsing of
verbose queries. In Proceedings of the 33rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’10, pages 829–830,
New York, NY, USA, 2010. ACM.

[16] J. H. Park, W. B. Cro�, and D. A. Smith. A quasi-synchronous dependence model
for information retrieval. In Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, CIKM ’11, pages 17–26, New York,
NY, USA, 2011. ACM.

[17] A. Shtok, O. Kurland, D. Carmel, F. Raiber, and G. Markovits. Predicting query
performance by query-dri� estimation. ACM Trans. Inf. Syst., 30(2):11:1–11:35,
May 2012.

[18] X. Xue, S. Huston, and W. B. Cro�. Improving verbose queries using subset dis-
tribution. In Proceedings of the 19th ACM International Conference on Information
and Knowledge Management, CIKM ’10, pages 1059–1068, New York, NY, USA,
2010. ACM.

[19] B. Yang, N. Parikh, G. Singh, and N. Sundaresan. A study of query term deletion
using large-scale e-commerce search logs. In Proceedings of the 36th European
Conference on IR Research on Advances in Information Retrieval - Volume 8416,
ECIR 2014, pages 235–246, New York, NY, USA, 2014. Springer-Verlag New York,
Inc.

[20] P. Yang and H. Fang. Estimating retrieval performance bound for single term
queries. In Proceedings of the 2016 ACM International Conference on the �eory of
Information Retrieval, ICTIR ’16, pages 237–240, New York, NY, USA, 2016. ACM.

[21] P. Yang and H. Fang. A reproducibility study of information retrieval models. In
Proceedings of the 2016 ACM International Conference on the �eory of Information
Retrieval, ICTIR ’16, pages 77–86, New York, NY, USA, 2016. ACM.

	Abstract
	1 Introduction
	2 Identifying Best Subquery
	2.1 Problem Formulation
	2.2 Subquery Ranking Features

	3 Experiments and Results
	3.1 Experiment Setup
	3.2 Results of Subquery Ranking
	3.3 Feature Importance Analysis

	4 Related Work
	5 Conclusions and Future Work
	References

