
16

Anserini: Reproducible Ranking Baselines Using Lucene

PEILIN YANG and HUI FANG, University of Delaware

JIMMY LIN, University of Waterloo

This work tackles the perennial problem of reproducible baselines in information retrieval research, focusing

on bag-of-words ranking models. Although academic information retrieval researchers have a long history

of building and sharing systems, they are primarily designed to facilitate the publication of research papers.

As such, these systems are often incomplete, inflexible, poorly documented, difficult to use, and slow, par-

ticularly in the context of modern web-scale collections. Furthermore, the growing complexity of modern

software ecosystems and the resource constraints most academic research groups operate under make main-

taining open-source systems a constant struggle. However, except for a small number of companies (mostly

commercial web search engines) that deploy custom infrastructure, Lucene has become the de facto platform

in industry for building search applications. Lucene has an active developer base, a large audience of users, and

diverse capabilities to work with heterogeneous collections at scale. However, it lacks systematic support for

ad hoc experimentation using standard test collections. We describe Anserini, an information retrieval toolkit

built on Lucene that fills this gap. Our goal is to simplify ad hoc experimentation and allow researchers to eas-

ily reproduce results with modern bag-of-words ranking models on diverse test collections. With Anserini,

we demonstrate that Lucene provides a suitable framework for supporting information retrieval research.

Experiments show that our system efficiently indexes large web collections, provides modern ranking mod-

els that are on par with research implementations in terms of effectiveness, and supports low-latency query

evaluation to facilitate rapid experimentation

CCS Concepts: • Information systems → Retrieval models and ranking; Retrieval effectiveness;

Retrieval efficiency; Search engine architectures and scalability;

Additional Key Words and Phrases: Ad hoc retrieval, TREC

ACM Reference format:

Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible Ranking Baselines Using Lucene. J. Data

and Information Quality 10, 4, Article 16 (October 2018), 20 pages.

https://doi.org/10.1145/3239571

1 INTRODUCTION

As information retrieval is primarily an empirical discipline, advances are built on experimen-
tal validation of proposed methods. Critical to continued progress in better ranking models are

This research was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada and

the U.S. National Science Foundation under IIS-1423002 and CNS-1405688. Any opinions, findings, and conclusions or

recommendations expressed do not necessarily reflect the views of the sponsors.

Authors’ addresses: P. Yang and H. Fang, University of Delaware, Newark, DE 19716, USA; emails: yangpeilyn@gmail.com,

hfang@udel.edu; J. Lin, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; email:

jimmylin@uwaterloo.ca.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM

1936-1955/2018/10-ART16 $15.00

https://doi.org/10.1145/3239571

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

https://doi.org/10.1145/3239571
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3239571

16:2 P. Yang et al.

baselines that serve as a means for measuring, calibrating, and contextualizing proposed contribu-
tions. Baselines appropriate to the subject of study need to be considered, of course, but researchers
nearly always include comparisons against a bag-of-words ranking model such as BM25 [47] and
query likelihood in the language modeling framework [45].

Unfortunately, researchers often do not pay enough attention to both the description and execu-
tion of the baselines. For example, an author might write something like “we used BM25 (or query
likelihood)” in the methods section of a paper without further elaboration. Such a statement, of
course, is an under-specified description. Frequently missing are the parameter settings, e.g., k1

and b for BM25, and μ for Dirichlet smoothing. For example, Robertson et al. [47] quite explic-
itly stated that “BM25 is referred to as BM25(k1,k2,k3,b).” However, most researchers neglect to
specify the appropriate parameters in their papers.

To complicate matters, Trotman et al. [52] noted that there are at least half a dozen different
variants of scoring functions commonly referred to as BM25 or query likelihood. In some cases,
effectiveness differences between these variants are statistically significant. So, which variant is
an author referring to in a paper? Similarly, Mühleisen et al. [41] studied four systems that all
purport to implement BM25 ranking and observed large differences in effectiveness. In fact, we
have even observed instances where the same research group, using the same system, reported
different baseline effectiveness values for the same ranking model, in different papers presented
at the same conference.1

Without reproducible baselines, how can we trust experimental results, the validity of compar-
isons, and the conclusions drawn? Is the field actually making progress as a whole? The meta-
analysis of Armstrong et al. [7] argued that there was little improvement in the effectiveness of
ranking models for ad hoc retrieval from 1998 to 2008, and they identified comparisons to weak
baselines as one of the culprits.

This work tackles the perennial problem of reproducible baselines in information retrieval re-
search, focusing in particular on simple bag-of-words ranking models.2 Although it would be de-
sirable to have reproducible baselines that range in sophistication, for example, a phrase-based
ranking model, a relevance feedback model, and a learning-to-rank baseline, in our opinion even
reproducibility for these simple models has not been fully solved. Thus, this is where we start.

Our approach tries to simplify adoption and maximize impact by taking advantage of the open-
source Java search engine Lucene. We present Anserini, a software toolkit built around Lucene
that allows a researcher to reproduce results on a number of standard TREC test collections using
a bevy of modern bag-of-words ranking models. This can be accomplished right out of the box, in
three easy steps:

(1) Clone our Git source code repository at http://anserini.io/ and build the software package
via a command (in Maven, the Java build manager) provided in our documentation.

(2) Issue one command to index a document collection of choice. The exact invocation can
be copied-and-pasted directly from custom guides that we have created for each test
collection.

(3) Issue another command to perform a retrieval run using topics from an existing test collec-
tion. The topics are included in our repository, and the exact invocations are also provided
in the same guides above.

1We purposely omit citations here, because we do not feel it appropriate to single out any particular set of authors for

criticism; our goal is to merely highlight issues with reproducibility that pervade the field.
2We are aware that what we call reproducibility in this article is perhaps better termed replicability or repeatability (see,

for example, arguments by Drummond [21]). However, we have decided to stick with reproducibility to better reflect the

current parlance of the information retrieval community.

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

http://anserini.io/

Anserini: Reproducible Ranking Baselines Using Lucene 16:3

The output is a retrieval run in standard TREC format that can be fed into a number of common
evaluation tools such as trec_eval to reproduce the results reported in this article (the repository
also includes qrels for scoring). Our study empirically validates three claims about Anserini (and
by extension, Lucene):

(1) It is highly scalable and able to efficiently index large web collections.
(2) It provides modern bag-of-words ranking models that are just as effectiveness as imple-

mentations in Indri and Terrier, two popular open-source systems used by researchers
today.

(3) It is fast in terms of providing low-latency query evaluation to support rapid ad hoc

experimentation.

This article describes the efforts behind Anserini, focusing in particular on the software infras-
tructure that we have built around Lucene. Our system was originally described in a SIGIR 2017
short paper [57], but here we extend those experiments and provide additional details about our
approach.

2 BACKGROUND AND RELATED WORK

Our work lies at the intersection of open-source information retrieval systems and reproducibility
of information retrieval experiments. These two threads are related in that making source code
available is touted across a broad range of scientific disciplines as one important step toward re-
producibility [25, 44, 46]. In this section, we review previous work, including our own experiences.

2.1 Open-Source Information Retrieval Systems

Information retrieval researchers have a long history of developing and sharing systems to sup-
port their work, which can be traced back to Cornell’s SMART system [13] from the mid 1980s.3

Over the past several decades, various IR systems have been built to aid in the development of
new retrieval models, to test hypotheses about information seeking, and to validate new evalu-
ation methodologies. An incomplete list includes Lemur/Indri [38, 39], Galago [15], Terrier [35,
42], ATIRE [51], Ivory [30], JASS [31], MG4J [12], [60, 61]. Although some academic systems are
widely used across many institutions (for example, Indri and Terrier), many researchers exclu-
sively conduct experiments on their own systems, which contributes to difficulty in interpreting
experimental results, since it is unclear if ranking models or implementations are actually being
compared.

In 2005, a workshop on Open Source Web Information Retrieval (OSWIR) was held at the
2005 IEEE/WIC/ACM International Conferences on Web Intelligence & Intelligent Agent Tech-
nology [11]. A follow-up workshop on Open Source Information Retrieval (OSIR) was organized
at SIGIR 2006, which provided a “forum that allow[ed] open source developers, consumers, and
researchers to interact to coordinate their efforts” [58]. Another iteration of the workshop was
held at SIGIR 2012 [50], which had similar goals. Both workshops were primarily venues for the
exchange of information and featured lively discussion on future directions. Both the SIGIR 2006
and 2012 workshops included representatives from the Lucene community, who shared their ex-
periences in cultivating an active community of users and contributors.

Academics typically build information retrieval systems to pursue some set of research objec-
tives: for example, more effective ranking models, more efficient query evaluation, or better sup-
port for information seeking. The primary goal of these systems is to aid in the dissemination
of research results. As such, academic codebases are usually not as well engineered as systems

3Personal communication, Chris Buckley.

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

16:4 P. Yang et al.

designed for production deployment and frequently lack important features that are not directly
needed to demonstrate an innovation. Common issues include poor documentation, lack of flexi-
bility in supporting use cases not explored in a paper, inability to handle heterogeneous content,
and limited support for parallelism and scaling. Furthermore, the growing complexity of modern
software ecosystems and the resource constraints most academic research groups operate under
make maintaining open-source systems a constant struggle, since much of these demands are not
directly related to research.

In fact, there was a discussion about the increasing costs of running information retrieval ex-
periments at the SIGIR 2012 workshop [50]:

Discussion on the difficulty of performing search engine experiments under in-
creasing collection sizes and decreasing budgets was had. For example, it is not
trivial to obtain ClueWeb09, to index it, and to create a run for TREC. The hardware
necessary is expensive and the skills in managing large collections are not easily
obtained (debugging a program that takes many hours to run is time-consuming).

As a specific example, consider the ClueWeb12 collection,4 which contains 733 million web pages
totaling 5.54TB compressed (or 27.3TB uncompressed). The standard practice for working with
this collection, as exemplified by the infrastructure built for the TREC 2014 Session Track [14],
is to separately index partitions of the collection and then build a distributed broker architecture
that integrates results from each partition. In this case, the organizers built 20 segment indexes
that were distributed across eight servers.5 The end-to-end system, they wrote, could be “quite
slow, requiring 30 seconds or more to respond to some queries.” In general, working with web-
scale collections using existing academic systems can be time- and resource-intensive (not every
research group can afford a cluster), even for basic tasks. It should not be this hard.

Today, only a small number of companies—mostly commercial web search engines such as
Google and Bing—deploy their own custom infrastructure for search. For everyone else in in-
dustry, the open-source Lucene search engine (including other software in its ecosystem such as
Solr and Elasticsearch) has become the de facto platform for building and deploying search appli-
cations. Prominent users include Apple, Bloomberg, Disney, LinkedIn, Netflix, and Twitter, as well
as many online retailers and companies in financial services. In addition to broad adoption, Lucene
benefits from a vibrant open-source community of developers. However, for various reasons that
we discuss in Section 3, Lucene is not well-suited to supporting information retrieval research. We
aim to address this issue.

More recently, Azzopardi et al. organized Lucene4IR,6 a workshop “that brought together re-
searchers and developers to discuss, plan, and develop a common set of teaching and training re-
sources for students and researchers wishing to use Lucene for information retrieval research” [10].
The event included tutorials on common operations with Lucene (i.e., indexing, retrieval, etc.) as
well as overviews of more advanced features such as extracting raw term statistics, implementing
different scoring functions, and so on.

The Lucene for Information Access and Retrieval Research (LIARR) Workshop at SIGIR 2017 [9]
represented the latest effort by information retrieval researchers to promote the use of Lucene
for research. The workshop was not organized as a traditional “mini conference” but was rather
designed as a hackathon for attendees to work hands-on with Lucene in a collaborative environ-
ment. For the participants, most of the workshop was spent in self-organized groups that explored

4http://www.lemurproject.org/clueweb12/.
5Personal communication, Ben Carterette.
6https://sites.google.com/site/lucene4ir/home.

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

http://www.lemurproject.org/clueweb12/
https://sites.google.com/site/lucene4ir/home

Anserini: Reproducible Ranking Baselines Using Lucene 16:5

various aspects of Lucene internals, ranging from the implementation of new retrieval features to
gaining a better understanding of Lucene’s document-scoring inner loop.

As co-organizers of the LIARR workshop, we are motivated by the desire to better align infor-
mation retrieval research with the practice of building real-world search applications. We believe
that a better alignment between academia and industry can lead to greater reproducibility of re-
search results, richer collaborations, and more efficient knowledge transfer. The focus on Lucene
maximizes our impact.

2.2 Reproducibility in Information Retrieval

Reproducibility is one of the fundamental pillars of the scientific method, plausibly dating back
to Aristotle, and its associated challenges are certainly not limited to information retrieval. Just
focusing on the computational sciences (in particular, setting aside the medical sciences), there has
already been much discussion [21, 24, 37, 44] as well as concrete proposals to improve the state of
affairs [20, 25, 46].

Within the information retrieval community, the 2009 landmark “improvements that don’t add
up” paper by Armstrong et al. [7] provided a meta-analysis that anchors recent discussions about
reproducibility. The authors performed a longitudinal survey of over 100 papers from SIGIR and
CIKM from 1998 to 2008 to track improvements in retrieval effectiveness on a wide range of
commonly-used TREC test collections. Somewhat depressingly, they concluded:

Most worryingly of all, there is no discernible upward trend in Ad-Hoc scores
over time. Rather, the pattern is of researchers consistently reporting similar im-
provements over similar baseline scores, with results reported in 2008 generally
indistinguishable from those reported in 1999. Matters are slightly better for the
(more recent) Web collections, but even so there is no consistent upwards trend.

That is, progress in improved ranking models (at least according to the test collections examined)
was mostly illusory during the decade from 1998 to 2008. Armstrong et al. diagnosed the problem
primarily as researchers reporting “significant” improvements over weak baselines.

The authors also tackled a common defense: that most research groups do not actually aim
to produce the best possible ranking in an absolute sense. Instead, they introduce a particular
innovation, whose effectiveness is demonstrated using a paired experiment “with” and “without”
that particular innovation. In these cases, the contribution is an examination of the innovation in
isolation, and thus little attention is typically paid to the absolute effectiveness. As a response to
this line of argumentation, Armstrong et al. considered the question of whether improvements over
weak baselines are meaningful, even if they are statistically significant. That is: “How confident
are we that a technique that yields an improvement over a weak baseline would also give an
improvement over a strong one, and therefore be a worthwhile addition to state of the art systems?”
They experimentally showed that weak improvements are not additive, a finding that has been
subsequently confirmed by Kharazmi et al. [26]—hence, improvements that do not add up.

The proposed solution of Armstrong et al. in addressing the experimental failings of researchers
is a repository of experimental results they called EvaluatIR [6]. In their proposal, researchers
would upload runs using standard test collections along with appropriate metadata to a central
repository. This resource would allow other researchers to quickly find the best-known results
on a particular test collection and would enable referees to more effectively evaluate claims made
in research papers. Better data management for information retrieval experiments is of course
not a new idea [3], and a group of researchers organized the Data infrastructurEs for Supporting
Information Retrieval Evaluation (DESIRE) Workshop at CIKM 2011 as a forum to coordinate and
promote ongoing efforts [2].

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

16:6 P. Yang et al.

Notably absent from EvaluatIR was a mechanism for depositing, managing, or executing code
associated with the experimental runs, but this limitation has been addressed by subsequent work:
VIRLab [22] provides a web-based virtual lab environment, primarily designed for students learn-
ing about information retrieval. The RISE platform [56] provides a Docker-managed environment
for experimenting with different retrieval models on top of Indri. However, it is unclear if any of
the above efforts have received significant uptake within the community and have fundamentally
improved experimental practices in information retrieval.

Armstrong et al. [7] concluded their paper with a concrete challenge: “Let us build a public sys-
tem that matches the BM25 run in the 1994 TREC-3 experiment, and then add to it the fruits of
the past 15 years’ research, to form a new baseline against which future effectiveness improve-
ments can be properly measured.” An initial effort along exactly these lines was spearheaded by
one of the co-authors of this article as part of the workshop on Reproducibility, Inexplicability,
and Generalizablity of Results (RIGOR) [5] at SIGIR 2015. The initial exercise for the workshop
was subsequently expanded into the “open-source reproducibility challenge” [29], in which devel-
opers of various open-source search engines were invited to contribute reproducible runs from
their systems in a common cloud-based environment. In total, seven systems participated, and the
effort yielded a repository7 that contains all code and scripts necessary to reproduce a wide range
of ad hoc retrieval runs on the Gov2 test collection. In addition to standard bag-of-words baselines
such as BM25, contributions included approximate ranking methods that trade effectiveness for
efficiency along with slower but more effective proximity-based ranking models and techniques
that incorporate relevance feedback. Beyond the repository itself, the exercise was valuable in
identifying many unanticipated challenges, including the surprising amount of effort necessary
to distill reproducible baselines into end-to-end execution scripts. For example, the effort revealed
hidden dependencies in one system—a previously unpublished data processing script that made
reproduction nearly impossible—and exposed two bugs in another system that were subsequently
fixed.

This work is a direct extension of the reproducibility challenge discussed above by one of the
co-organizers. Lucene was one of the systems evaluated, and it ranked fourth in terms of query la-
tency. However, it was more effective than all the systems that were faster than it. Overall, Lucene
represented a good tradeoff between effectiveness and efficiency and also demonstrated good in-
dexing scalability. Given all the advantages discussed in the previous section, it made sense to
focus additional development efforts around Lucene.

3 ANSERINI OVERVIEW

Despite its popularity in industry and broad adoption for operational search deployments in pro-
duction environments, Lucene remains under-utilized in information retrieval research. This sec-
tion begins with some high-level discussions of why we believe this might be the case to motivate
our efforts in building Anserini. We then describe the additional software infrastructure we have
built on top of Lucene to simplify ad hoc experimentation with standard information retrieval test
collections.

3.1 Why Not Lucene?

From its very beginnings in 1999, Lucene was written for “real-world” search applications, not
with researchers in mind. For the most part, its developers targeted an audience that mostly used
search engines as black boxes, as opposed to researchers who require access to ranking internals
such as scoring functions, mechanisms for postings traversal, and so on. Because of the target user

7https://github.com/lintool/IR-Reproducibility.

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

https://github.com/lintool/IR-Reproducibility

Anserini: Reproducible Ranking Baselines Using Lucene 16:7

population, documentation for Lucene internals has always been quite poor, especially in keeping
up with the rapid pace at which the developer community has been releasing improved versions
of the system. Access to these internals is exactly what information retrieval researchers need for
their studies, and therefore poor documentation has been a barrier to entry.

To further compound this issue, the internal APIs in Lucene are not organized in an intuitive
manner, with awkwardly-named classes and many levels of indirection that make understanding
the codebase difficult. As an example, to access the terms in a particular index (i.e., the dictio-
nary), the developer needs to first open up an IndexerReader, access a LeafReader through a
LeafReaderContext, select the desired field to obtain the Terms object, which provides an iterator
over TermsEnum, which supplies a sequence of BytesRef objects, each of which finally provides
access to the raw byte[] that represents the term (UTF-8 string). The TermsEnum is actually a
BytesRefIterator, but the relationship between “terms” and “bytesref” is not immediately ob-
vious. Given a term in the dictionary, the developer can now go back to the LeafReader and
request its postings, which is represented by the PostingsEnum object, which implements the
DocIdSetIterator interface. However, this interface doesn’t conform to a standard iterator. For
example, the termination condition (i.e., to identify the end of the iteration) is to check that the re-
sult of the nextDoc()method is equal to DocIdSetIterator.NO_MORE_DOCS. Thus, the nextDoc()
method has overloaded semantics, simultaneously supplying the next document id as well as sig-
naling when the caller has reached the end of the postings list. Finally, the developer has to re-
member to call DocIdSetIterator.nextDoc() on initialization before any of the per-document
methods are available.

None of these issues are insurmountable for a competent developer, but together they con-
tribute to a steep learning curve. To a core Lucene contributor steeped in the history of how the
project evolved, there is likely good rationale for why the classes are designed and implemented
(or evolved) this way. However, for researchers encountering Lucene for the first time, they are
left with the impression that low-level APIs in Lucene are difficult to use. Note that for “black box”
users of Lucene, who likely do not need access to system internals, these issues do not present
hurdles to adoption.

Another side effect of Lucene’s focus on “black box” search is that it has severely lagged be-
hind in the implementation of modern ranking functions. For the longest time, the default scoring
model was an ad hoc variant of TF-IDF. For example, Turtle et al. [54] showed that Lucene’s out-of-
the-box effectiveness was far worse than Indri’s. Okapi BM25 was not added to Lucene until 2011,8

more than a decade after it gained widespread adoption in the research community as being more
effective than TF-IDF variants. This lag in adopting “research best practices” has contributed to the
perception that Lucene is not effective and ill-suited for information retrieval research. Whatever
the case might have been historically, this perception is no longer accurate today. Lucene comes
with implementations of many modern bag-of-words ranking models, and we show that the ef-
fectiveness of Lucene’s implementations is on par with those of Indri and Terrier, two popular
systems used in academic research (see Section 4.3).

Finally, because Lucene is implemented in Java, there is sometimes the perception that it is slow
and inefficient. Developers often point to the managed memory environment of the Java Virtual
Machine (JVM) as not being conducive to efficient low-level implementations of search engine
internals. However, in the reproducibility study of Lin et al. [29], Lucene was the fourth fastest
system (out of seven) in terms of query latency, and it was more effective than all the systems that
were faster than it. The study showed that while some configurations of Indri and Terrier were
more effective, they were also much slower. Our experiments consider a much broader range of test

8https://issues.apache.org/jira/browse/LUCENE-2959.

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

https://issues.apache.org/jira/browse/LUCENE-2959

16:8 P. Yang et al.

collections and confirm these basic findings. The open-source community has devoted substantial
effort to optimizing the performance of Lucene, and today the system is effective in producing
high-quality rankings, efficient in supporting low-latency query evaluation, and scalable in rapidly
indexing large web collections.

3.2 Simplifying Ad Hoc Experimentation

Test collections play a central role in information retrieval research and a substantial amount of
research activity focuses on improving ad hoc retrieval using these evaluation resources. It is the
explicit goal of Anserini to simplify ad hoc experimentation using Lucene to facilitate this core
research activity.

The biggest hurdle to using Lucene for information retrieval research is perhaps best charac-
terized by Grant Ingersoll, a Lucene committer as well as the CTO and co-founder of Lucidworks,
a company that provides commercial Lucene products and support. He stated that “Lucene is a
kit of parts” in the keynote presentation at the SIGIR 2017 LIAAR Workshop [9], and it does not
prescribe how one would assemble those parts for various applications. For production search de-
ployments, Solr fills this void, but no such “canonical assembly” exists specifically for information
retrieval research. Anserini fills this gap.

To give a few specific examples: Lucene provides a rich set of APIs and implementations for
document processing (parsing document file formats, tokenization, stopword removal, etc.) prior
to indexing. Although the information retrieval community has developed various bits of code for
ingesting standard test collections (e.g., the TREC SGML format, TREC-specific WARC formats
for web collections, etc.), there did not exist a single repository that organizes all existing imple-
mentations in a unified manner, connected directly to appropriate Lucene APIs. Anserini provides
exactly this—a unified document processing pipeline built on top of Lucene that is able to ingest
standard test collections.

Another important contribution of Anserini is in scaling up multi-threaded indexing, which is
important for handling large web collections. Although Lucene’s indexing primitives are thread
safe, it does not provide specific guidance on how to write a robust, high-throughput, multi-
threaded indexer, where we need to deal with issues such as coordination, synchronization, and
load balancing across multiple threads. In addition, Lucene provides a myriad of index configura-
tion options, whose impact on performance is not transparent. Ultimately, what researchers desire
is an end-to-end indexing application that ingests a document collection and builds an inverted
index. Anserini provides exactly this. After some exploration, we settled on a multi-threaded im-
plementation based on a work pool that has a user-configurable number of threads. Test collec-
tions are typically divided into files (which Anserini calls “file segments”): the indexer queues the
processing of each file segment in the work pool, where they are indexed by individual threads.
Anserini also provides default configurations (e.g., setting of buffer sizes) based on light tuning
and our own experiences in working with a variety of test collections.

On the retrieval end, since Lucene was not originally designed for researchers, support for run-
ning experiments on standard test collections was largely missing. Anserini fills this gap by im-
plementing a number of missing features: parsers for different query formats and a unified driver
program for ad hoc experiments that outputs standard TREC format, which can then be evaluated
using trec_eval or other common tools.

Putting everything together, Anserini allows researchers to conduct ad hoc experiments on a
broad range of test collections right out of the box. After cloning our source code repository and
building the package, one command builds an inverted index for a document collection, and a
second command performs a retrieval run, ready for evaluation using standard tools. All topics
and qrels, as well as the exact invocations to reproduce baseline runs, are provided in our detailed

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

Anserini: Reproducible Ranking Baselines Using Lucene 16:9

guides for a diverse set of TREC test collections. If Lucene can be characterized as a “kit of parts,”
then Anserini provides a “canonical assembly” for information retrieval researchers. Beyond the
codebase itself, we provide documentation to ease the learning curve for information retrieval
researchers who desire access to Lucene internals.

3.3 Beyond Bag-of-Words Ranking Models: Multi-Stage Ranking Architectures

Lucene currently supports a number of modern bag-of-words ranking models (which we evalu-
ate in Section 4.3) and Anserini simplifies ad hoc experimentation using them. The combination
provides reproducible baselines for information retrieval researchers, which is the focus of this
work.

What about reproducibility beyond simple bag-of-words ranking models? Although we have
not explicitly addressed this (next) challenge, we believe that baseline bag-of-words ranking mod-
els also have an important role to play in modern multi-stage ranking architectures, which have
been explored by researchers [8, 16, 17, 36, 49, 55] and deployed commercially [33, 43]. The basic
idea is to decompose document ranking into a sequence of stages. The first stage consults the in-
verted index to identify a set of candidate documents based on a lightweight scoring model such as
BM25 (or even Boolean keyword matching). One or more subsequent stages then processes these
candidates, prunes away those not likely to be relevant, and reranks the remaining candidates. The
intuition behind this multi-stage design is that later stage rankers can apply increasingly expensive
features and richer ranking models without compromising query latency, since they are applied
to fewer and fewer candidate documents. Learning-to-rank techniques [28], and more recently,
neural ranking models, are typically deployed as later stage rankers in such multi-stage ranking
architectures. For example, Bhaskar and Craswell [40] call this “telescoping” in their overview of
neural models for information retrieval.

A consequence of this design is that research at the forefront of document ranking today still
often relies on a candidate generation stage that uses a bag-of-words ranking model like BM25. We
believe that Anserini can fill this role, and to this end we have designed a simple API that can be
used to build reranking stages in a multi-stage ranking architecture. Anserini provides a reference
implementation of the RM3 variant [1] of relevance models [27] using our reranking API. Thus,
beyond providing reproducible baselines for ad hoc experiments, Anserini offers a platform for
building end-to-end systems that implement state-of-the-art document ranking models. See Tu
et al. [53] and Sequiera et al. [48] for two recent attempts by our team at integrating Lucene with
neural ranking models.

4 EVALUATION

Anserini simplifies ad hoc experimentation and allows researchers to easily reproduce results with
modern bag-of-words ranking models on diverse test collections. We describe experiments to sup-
port three specific claims about Anserini (and Lucene by extension) in this context. First, it is highly
scalable and able to efficiently index large web collections. Second, the effectiveness of diverse
ranking models is on par with results reported in previous research papers as well as implementa-
tions in Indri and Terrier. Finally, Anserini provides low-latency query evaluation to support rapid
experimentation.

4.1 Experimental Setup

Our experiments used the following document collections:

• TREC Disks 1 & 2 (Disk12) and TREC Disks 4 & 5 (Disk45), excluding Congressional Record:
newswire collections used in many TREC ad hoc evaluations.

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

16:10 P. Yang et al.

Table 1. Topics and Document Collections Used in Our Experiments

Description Topics Document collection # docs

Ad hoc task at TREC-1 51–100 (ad hoc)
Disks 1–2 741,616Ad hoc task at TREC-2 101–150 (ad hoc)

Ad hoc task at TREC-3 151–200 (ad hoc)
Ad hoc task at TREC-6 301–350

Disks 4–5

(−Congressional Record)
528,030

Ad hoc task at TREC-7 351–400
Ad hoc task at TREC-8 401–450
Robust track at TREC 2004 601–700
Robust track at TREC 2005 Robust04 hard queries AQUAINT 1,031,455
Web task at TREC-9 (2001) 451–550 WT10g 1,688,402
Terabyte track at TREC 2004 701–750

Gov2 25,172,934Terabyte track at TREC 2005 751–800
Terabyte track at TREC 2006 801–850
Web track at TREC 2010 51–100 (web) ClueWeb09b 50,220,189
Web track at TREC 2011 101–150 (web)

ClueWeb09 503,892,800
Web track at TREC 2012 151–200 (web)
Web track at TREC 2013 201–250 (web) ClueWeb12-B13 52,249,039
Web track at TREC 2014 251–300 (web) ClueWeb12 731,705,088

• The AQUAINT Corpus of English News Text, a newswire collection used in later TREC ad

hoc evaluations.
• The WT10g and Gov2 web research collections from CSIRO (Commonwealth Scientific and

Industrial Research Organisation), distributed by the University of Glasgow.
• ClueWeb collections from 2009 and 2012, which are web crawls gathered by Carnegie

Mellon University.

For measuring effectiveness, we used topics and relevance judgments from a number of TREC ad

hoc and web evaluations. The exact experimental conditions are shown in Table 1.
All experiments were conducted on an otherwise idle server with dual Intel Xeon E5-2699 v4

processors (2.2GHz, 22 cores, 55M cache) and 1TB RAM (16 × 64GB quad rank LRDIMMs). The
server contains 18× 10TB 7.2k SATA disks in a RAID-6 configuration running XFS. Overall, we can
characterize this machine as “high-end commodity” but not beyond the reach of many information
retrieval research groups. In terms of software configuration, our server runs RHEL 6.9 and JVM
1.8.0_141. Anserini is available at http://anserini.io/ and the current release is v0.1.0, based on
Lucene 6.3.0.

4.2 Indexing Performance

The indexing performance of Anserini on the various collections is shown in Table 2. In all cases,
we used 44 threads to saturate the cores of our test machine, although for the smaller collections
indexing time with fewer threads is about the same or even slightly less (due to parallelism over-
head). Stemming was performed using the Porter stemmer with a custom stopwords list.9

9See Lucene’s StandardAnalyzer for details.

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

http://anserini.io/

Anserini: Reproducible Ranking Baselines Using Lucene 16:11

Table 2. Indexing Performance Comparing Different Configurations of Anserini

Collection
Anserini (count) Anserini (pos) Anserini (all)
time size time size time size

Disk12 20s 217MB 38s 1.3GB 45s 2.5GB
Disk45 17s 179MB 33s 1.1GB 40s 2.1GB
AQUAINT 30s 329MB 52s 2.0GB 1m 7s 3.8GB
WT10g 1m 33s 741MB 2m 0s 2.0GB 2m 20s 9.3GB
Gov2 16m 2s 12GB 33m 28s 83GB 38m 27s 221GB
ClueWeb09b 43m 28GB 1h 19m 178GB 1h 41m 692GB
ClueWeb09 7h 45m 257GB 12h 10m 1.6TB 13h 44m 5.9TB
ClueWeb12-B13 51m 29GB 1h 31m 176GB 2h 28m 872GB
ClueWeb12 15h 17m 380GB 21h 27m 2.4TB 29h 54m 12TB

We report results for three different index configurations:

• count indexes where only term frequency information is stored (count),
• positional indexes where term position information is stored (pos),
• positional indexes that also store the parsed document vectors and the original documents

in a forward index (all).

The “count” index condition is sufficient for bag-of-words queries. The “all” index condition sup-
ports the broadest range of operations: storing the parsed document vectors enables efficient rel-
evance feedback and storing the raw documents allows snippet generation and browsing of origi-
nal source documents. The “pos” index condition occupies a middle ground; these indexes support
phrase queries and proximity operators, but not efficient relevance feedback or snippet generation.
The tradeoff between these different index configurations is longer indexing time and greater space
requirements, but with Anserini the developer has fine-grained control over exactly what is stored
in the index.

For each index condition, we report the indexing time averaged over two trials as well as the
index size computed with the Unix du command. Note that reported time units are different with
the ClueWeb collections. Anserini is able to completely index TREC newswire collections in less
than a minute. It is able to build count indexes over the smaller ClueWeb subsets (ClueWeb09b
and ClueWeb12-B13) in less than an hour; storing the parsed document vectors and the original
raw documents naturally takes longer. These two collections are roughly the same size in terms
of number of documents, but web pages in ClueWeb12-B13 are on average larger, and therefore
the longer indexing time for the “all” condition on ClueWeb12-B13 is likely dominated by the I/O
costs of writing more data to disk.

Most impressively, Anserini is able to build a count index over all of ClueWeb12 (733 million
pages totaling 5.54TB compressed) in around 15h. Even including positional information, parsed
document vectors, and original raw documents, the entire index completes in about 30h, yielding
an index of 12TB. These results show that Lucene achieves high-throughput indexing and has no
trouble scaling to large web collections. Furthermore, Lucene is able to achieve this feat in a multi-
threaded setting on a single server, without having to resort to distributed frameworks such as
MapReduce, as with previous academic systems [15, 30].

To contextualize Lucene’s indexing performance, we also indexed the same collections using
Terrier 4.2.0 and Indri 5.11 on the same machine, following the same experimental procedure.
Indri by default builds an index equivalent to the “all” Anserini index. For Terrier, we followed

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

16:12 P. Yang et al.

Table 3. Indexing Performance of Terrier and Indri

Collection
Terrier Indri

time size time size

Disk12 2m 54s 184MB 4m 7s 2.4GB
Disk45 2m 28s 144MB 3m 6s 1.8GB
AQUAINT 5m 30s 276MB 6m 41s 3.6GB
WT10g 13m 53s 789MB 20m 45s 9.1GB
Gov2 5h 46m 11GB 13h 20m 199GB
ClueWeb09b 12h 27m 29GB 29h 10m 576GB
ClueWeb12-B13 16h 58m 36GB 53h 10m 700GB

a “best practices” guide written by the authors for ClueWeb09b,10 which advocates use of the
single-pass indexer.11 For consistency, we used the same setting across all collections. This builds
the equivalent of the Anserini “count” index. In both cases, stemming was performed with the
Porter stemmer, although Indri12 and Terrier13 use different stopwords lists. We used the following
memory allocations for both systems: 10g for Disk12, Disk45; 20g for AQUAINT; 50g for WT10g;
500g for Gov2; 1000g for ClueWeb09b and ClueWeb12-B13. Due to the long running times on
ClueWeb09b and ClueWeb12-B13, we did not attempt to index all of ClueWeb09 and ClueWeb12.

Results from these indexing experiments are shown in Table 3. For comparable index configura-
tions, we see that Lucene is much faster, which supports our empirical claim that Lucene is highly
scalable and able to efficiently index large web collections.

4.3 Ranking Effectiveness and Efficiency

The main goal of this article is to demonstrate the suitability of Anserini for information retrieval
research. From the perspective of effectiveness, we describe two sets of experiments: First, we
conducted a series of reproducibility experiments comparing the effectiveness of Lucene’s rank-
ing models with figures reported in research papers that have examined those models. Anserini’s
effectiveness is higher in some cases and lower in other cases, but overall, we are able to repro-
duce results from the comparison papers. Second, for the same ranking models, we compared the
effectiveness of Lucene against reimplementations in Indri (using the RISE framework [56]) and
Terrier, across a number of standard TREC test collections. Overall, experiments show that the
effectiveness of ranking models in Anserini is on par with those from Indri and Terrier.

Specifically, we examined the following ranking models, all of which have been implemented
in Lucene:

• BM25 [47], derived from the probabilistic retrieval framework, is one of the most commonly
used baselines in information retrieval.

• LM refers to query likelihood with respect to Dirichlet-smoothed language models [59],
derived from the language modeling framework.

• PL2 [4] is a representative ranking model from the divergence from randomness frame-
work. It measures the randomness of terms using Poisson distributions with Laplacian
smoothing.

• F2EXP is from the family of axiomatic models [23], which starts with an existing ranking
function (e.g., BM25) and searches for instantiations that satisfy more retrieval constraints.

10http://ir.dcs.gla.ac.uk/wiki/Terrier/ClueWeb09-B.
11Using the command bin/trec_terrier.sh -i -j.
12http://www.lemurproject.org/stopwords/stoplist.dft.
13https://github.com/terrier-org/terrier-core/blob/4.2/src/resources/stopword-list.txt.

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

http://ir.dcs.gla.ac.uk/wiki/Terrier/ClueWeb09-B
http://www.lemurproject.org/stopwords/stoplist.dft
https://github.com/terrier-org/terrier-core/blob/4.2/src/resources/stopword-list.txt

Anserini: Reproducible Ranking Baselines Using Lucene 16:13

• SPL is derived from an information-theoretic model [18] that attempts to capture relevance
in terms of how a word deviates from its average behavior. For SPL, the smoothed power-
law distribution is used.

Before presenting results, we discuss one final detail. Due to multi-threaded indexing, there is un-
avoidable non-determinism in the order that documents are added to the index. This has an impact
on breaking score ties during retrieval: Lucene by default uses the internal document id assigned
at index time, which means that different index instances of the same collection may yield slightly
different rankings. We have separately explored this issue [32] and quantified the differences in
effectiveness arising from this non-determinism to be rather small (typically in the fourth decimal
place for average precision). Anserini addresses this issue by breaking score ties using collection
document ids, and thus guarantees that runs using different index instances yield exactly the same
results. However, this comes at a cost in terms of query evaluation latency due to the necessity of
consulting external identifiers during the inner loop of query evaluation. For ClueWeb collections,
query evaluation is around 20% slower compared to an arbitrary tie-breaking approach [32]. All
results presented below were conducted under this strict reproducibility condition.

In our first set of experiments, we attempted to reproduce as closely as possible the settings
used in research papers that examined the models in detail; note that these are not necessarily the
papers in which the models were first proposed. Effectiveness in terms of average precision (AP)
at rank 1000 is shown in Table 4 for various combinations of document collections and topics. The
first column provides citations to the comparison paper for each ranking model. The “Reference”
column contains figures copied directly from the comparison papers, and the “Anserini” column
reports our reproduced results. Official TREC topics have three components—the title, description,
and narrative—and the comparison research papers often describe experiments under different
conditions, so our table is similarly organized to facilitate comparisons.

We see that overall, our reproduced results are quite comparable to those reported in the
comparison research papers, with the exception of PL2 on title, description, and narrative. In
some cases, the original results are higher and in other cases, Anserini results are higher. Note
that since we are merely reporting effectiveness figures from prior published work, we lack the
details for significance testing.

Nevertheless, these results support our claim that Lucene is suitable for information retrieval
research, since it is able to support diverse ranking models. For the large PL2 differences, it is
worth pointing out that Yang and Fang [56] observed similar discrepancies in their reproducibility
setup with Indri. We suspect that for this model, small changes in preprocessing can lead to large
differences in effectiveness.

In our second set of experiments, we compared the retrieval effectiveness of Indri (again, using
the RISE framework [56]), Terrier, and Anserini using the same ranking models. For Terrier,
we only included BM25, LM, and PL2, since they are the only ranking models tunable out of
the box. In this setup, unlike in the previous experiments that tried to replicate experimental
conditions in the reference papers as closely as possible, all the Indri and Terrier comparisons
shared preprocessing and indexing configurations.

For all systems, we report results from parameter tuning to optimize average precision (AP) at
rank 1000 on the newswire collections, WT10g, and Gov2, and NDCG@20 for the ClueWeb col-
lections. There was no separation of training and test data, so these results should be interpreted
as oracle settings. We explored the following parameter settings:

• for BM25, k = 0.9 and b ∈ [0, 1] in increments of 0.1;
• for LM, μ ∈ [0, 5000] in increments of 500;
• for PL2, c ∈ [0.5, 20] in increments of 0.5;

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

16:14 P. Yang et al.

Table 4. Reproducibility Results under Different Collection/Topic Combinations, with

Effectiveness Reported in Terms of Average Precision (AP) at Rank 1000

(a) “title” topics

Model Collection Topics (ad hoc) Reference Anserini Δ

BM25 [34]
Disk45 301–450 601–700 0.2544 0.2529 −0.59%
WT10g 451–550 0.1879 0.2013 +7.13%
Gov2 701–850 0.2931 0.3049 +4.03%

LM [59]
Disk45 351–400 0.1860 0.1832 −1.51%
Disk45 401–450 0.2560 0.2461 −3.87%

F2EXP [23]
Disk45 351–400 0.1870 0.1882 +0.64%
Disk45 401–450 0.2570 0.2475 −3.70%

SPL [18]
Disk12 151–200 0.2620 0.2445 −6.68%
Disk45 301–450 601–700 0.2540 0.2495 −1.77%

(b) “description” topics

Model Collection Topics (ad hoc) Reference Anserini Δ

BM25 [34]
Disk45 301–450 601–700 0.2260 0.2256 −0.18%
WT10g 451–550 0.1745 0.1870 +7.16%
Gov2 701–850 0.2234 0.2380 +6.54%

LM [59]
Disk45 351–400 0.1820 0.1747 −4.01%
Disk45 401–450 0.2280 0.2174 −4.65%

F2EXP [23]
Disk45 351–400 0.1860 0.1911 +2.74%
Disk45 401–450 0.2360 0.2349 −0.47%

(c) “title + description + narrative” topics

Model Collection Topics (ad hoc) Reference Anserini Δ

LM [59]
Disk45 351–400 0.2240 0.2125 −5.13%
Disk45 401–450 0.2600 0.2447 −5.88%

PL2 [4]

Disk12 51–100 0.2065 0.2352 +13.90%
Disk12 101–150 0.2383 0.2787 +16.95%
Disk12 151–200 0.2705 0.2178 −19.48%
Disk45 301–350 0.2569 0.1728 −32.74%
Disk45 351–400 0.2212 0.1891 −14.51%
Disk45 401–450 0.2562 0.2212 −13.66%

F2EXP [23]
Disk45 351–400 0.2250 0.2324 +3.29%
Disk45 401–450 0.2600 0.2669 +2.65%

The “Reference” column contains figures copied from previous papers (sources denoted in the first

column) and the “Anserini” column reports our reproduced results.

• for F2EXP s ∈ [0, 1] in increments of 0.05;
• for SPL c ∈ [0.5, 10] in increments of 0.5.

Effectiveness on various collection/topic combinations are shown in Table 5. We applied a paired
two-tailed t-test (p = 0.05) to assess the significance of effectiveness differences between each
pair of systems for each model; significant differences are denoted with superscript A, I , and T ,
indicating that the metric is significantly better than Anserini, Indri, and Terrier, respectively.
Across these many conditions, we only observe two cases where effectiveness differences are

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

Anserini: Reproducible Ranking Baselines Using Lucene 16:15

Table 5. Effectiveness Comparisons between Anserini, Indri, and Terrier

on Standard TREC Test Collections

(a) Newswire, WT10g, and Gov2: Effectiveness measured in terms of average precision (AP)

at rank 1000.

Collection Disk12 Disk45 Disk45 AQUAINT WT10g Gov2
Topics (ad hoc) 51–200 301–450 601–700 Robust05 451–550 701–850

Classic Anserini 0.1920 0.2037 0.2450 0.1494 0.1234 0.1564
BM25 Indri 0.2040 0.2226 0.2895 0.2041 0.1955 0.2970
BM25 Terrier 0.2286 0.2225 0.2882 0.2022 0.2136 0.3050
BM25 Anserini 0.2302 0.2298 0.2916 0.2090 0.2012 0.3030
LM Indri 0.2269 0.2246 0.2900 0.1980 0.1915 0.2995
LM Terrier 0.2231 0.2231 0.2902 0.2028 0.2111 0.2976
LM Anserini 0.2250 0.2263 0.2893 0.2026 0.2034 0.2954
PL2 Indri 0.2279 0.2247 0.2932 0.1975 0.2012A 0.3029
PL2 Terrier 0.2231 0.2257 0.2942 0.1969 0.2129AI 0.3076
PL2 Anserini 0.2230 0.2263 0.2917 0.2006 0.1889 0.3067
F2EXP Indri 0.2277 0.2277 0.2877 0.1951 0.2020 0.2840
F2EXP Anserini 0.2221 0.2222 0.2795 0.1926 0.1932 0.2924
SPL Indri 0.2240 0.2230 0.2917 0.1960 0.1947A 0.3017
SPL Anserini 0.2151 0.2250 0.2900 0.1969 0.1726 0.3070

(b) ClueWeb collections: Effectiveness measured in terms of NDCG@20.

Collection ClueWeb09b ClueWeb09 ClueWeb12-B13 ClueWeb12
Topics (web) 51–200 51–200 201–300 201–300

Classic Anserini 0.0630 0.0201 0.0425 0.0619
BM25 Indri 0.1390 - 0.1306 -
BM25 Terrier 0.1456 - 0.1216 -
BM25 Anserini 0.1422 0.0974 0.1292 0.2380
LM Indri 0.1164 - 0.1164 -
LM Terrier 0.1287 - 0.1154 -
LM Anserini 0.1227 0.0807 0.1178 0.2116
PL2 Indri 0.1223 - 0.1205 -
PL2 Terrier 0.1312 - 0.1188 -
PL2 Anserini 0.1274 0.0812 0.1206 0.2022
F2EXP Indri 0.1321 - 0.1140 -
F2EXP Anserini 0.1399 0.0914 0.1280 0.2330
SPL Indri 0.1209 - 0.1196 -
SPL Anserini 0.1273 0.0835 0.1206 0.2153

The superscript A , I , and T indicate significantly better than Anserini, Indri, and Terrier, respectively, based on a paired

two-tailed t -test (p = 0.05).

significant (PL2 and SPL), both on WT10g. For both models, Anserini outperforms Indri on most
of the other collections (although the differences are not significant).

We also report results from Lucene’s default TF-IDF ranking function (denoted “Classic”),
which in most cases is far less effective than any of the other ranking models we examined. This
lends credence to the impression that Lucene does not provide effective rankings, at least prior to
the implementation of BM25, LM, and more modern ranking models. However, it is clear today

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

16:16 P. Yang et al.

Table 6. Ranking Efficiency (Average Query Latency) Comparing Anserini, Indri,

and Terrier Using BM25 (Top 1000 hits)

(a) Newswire and Web collections

Collection Disk12 Disk45 Disk45 AQUAINT WT10g Gov2
Topics (ad hoc) 51–200 301–450 601–700 Robust04 451–550 701–850

Anserini (count) 13ms 13ms 13ms 20ms 30ms 123ms
Anserini (pos) 13ms 13ms 13ms 20ms 30ms 127ms
Anserini (all) 60ms 47ms 48ms 60ms 100ms 267ms
Indri 32ms 23ms 26ms 22ms 34ms 512ms
Terrier 17ms 11ms 12ms 30ms 31ms 331ms

(b) ClueWeb collections

Collection ClueWeb09b ClueWeb09 ClueWeb12-B13 ClueWeb12
Topics (web) 51–200 51–200 201–300 201–300

Anserini (count) 0.29s 2.5s 0.28s 3.8s
Anserini (pos) 0.29s 2.3s 0.28s 3.9s
Anserini (all) 0.46s 2.8s 0.53s 4.5s
Indri 1.3s - 1.1s -
Terrier 0.63s - 0.76s -

that Lucene provides ranking models that are on par with those of Indri and Terrier in terms of
effectiveness.

Finally, in Table 6, we report the results of efficiency experiments comparing the systems
under the same collection/topic combinations as Table 5. For these experiments, we used BM25
to retrieve up to 1000 hits. The table reports per query retrieval latency (note different units of
time). In all cases, we warmed up underlying operating system caches by first performing a few
experimental runs and discarding the results. We then computed averages over the next three
trials in each condition: these are the values reported in the table. For Anserini, latencies over all
three index conditions are reported.

We make a few interesting observations: query latency with Anserini appears to differ based
on the Lucene index configuration. For count and positional indexes, there is no measurable
difference for small collections and sometimes a small difference for large collections. However,
retrieval from the “all” condition (positional indexes plus document vectors and original docu-
ments) is noticeably slower. For small collections, Anserini is faster than Indri with count and
positional indexes, but slower in the “all” index configuration. For anything larger than Gov2,
Anserini is faster than Indri in all index configurations. Terrier and Anserini (count and positional
indexes) have comparable query latencies on small collections, but all index configurations
of Anserini are faster on large collections. These results dispel the myth that the Java Virtual
Machine is not conducive to implementing efficient search engines. Indri (implemented in C++)
is slower than Terrier (implemented in Java) for nearly all collections. Although the choice of
language does matter, performance is more an issue of careful software engineering, an area
where the Lucene community has made significant investments over the years.

In summary, our experiments show that Anserini is at least as good as Indri and Terrier in
terms of effectiveness, and faster in both indexing and retrieval. These results are consistent
with findings from the Open-Source IR Reproducibility Challenge [29]. Taken together, empirical
evidence presents a compelling case for adopting Lucene for information retrieval research.

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

Anserini: Reproducible Ranking Baselines Using Lucene 16:17

5 CONCLUSIONS

One motivation for having reproducible baselines, as discussed in the Introduction, is the prolif-
eration of model variants that confound comparisons. What exactly does BM25 mean? In truth,
Lucene’s BM25 is not a perfectly faithful implementation of Robertson’s original equations [47].
However, we argue that it doesn’t actually matter: at the end of the day, rankings are not gener-
ated by ranking models—they are generated by implementations of those ranking models, rolled
up with hundreds of small design decisions whose only “documentation” is the source code itself.
Thus, what we call a baseline is not important as long as the label points to a stable computational
artifact and we have a repeatable way to execute that computational artifact to generate results.
We believe we’ve accomplished this with Anserini.

One potential downside of operationalizing reproducible baselines as computational artifacts
is that the artifacts themselves evolve. The results reported in this article, for example, represent
a snapshot in time—both for Anserini as well as Indri and Terrier. Anserini, in turn, depends on
Lucene, which changes over time as features are added and bugs are fixed. We feel that such a
coupling is acceptable for a few reasons: First, the Lucene community is large and diverse, and
the contributors are generally cognizant of the downstream impact of changes that may affect
the behavior of systems that build on Lucene. Second, Anserini’s focus on reproducible baselines
means that it is dependent mostly on core Lucene features, which are relatively mature and stable.

In our experience, concerns about shifting Lucene foundations have mostly proved unfounded:
Since the inception of the project, we have gone through numerous Lucene upgrades, all of which
have been successful with minimal effort. Furthermore, the simplicity and speed of running base-
line retrieval experiments mean that we can run regression tests (part of our repository) on all
existing test collections whenever the underlying Lucene version changes. We are confident that
Anserini can continue to track the evolution of Lucene itself. Since the source code is hosted on
GitHub, all code changes are easy to browse and access. If there is ever any doubt about which “ver-
sion” of Anserini is used to perform a particular experiment, then one could unambiguously refer
to a commit id, as advocated by Crane [19] in a recent reproducibility study on neural networks.

To conclude, our message to the information retrieval community is that Lucene is efficient
and scalable without compromising effectiveness. Furthermore, Lucene has the benefit of a large
user community and broad adoption in industry. Anserini provides the “canonical assembly” of
Lucene’s “kit of parts” to support ad hoc experimentation and reproducible baselines for infor-
mation retrieval researchers. We hope that our system will help to better align the research and
practice of information retrieval, accelerating progress in the field.

REFERENCES

[1] Nasreen Abdul-Jaleel, James Allan, W. Bruce Croft, Fernando Diaz, Leah Larkey, Xiaoyan Li, Donald Metzler, Mark

D. Smucker, Trevor Strohman, Howard Turtle, and Courtney Wade. 2004. UMass at TREC 2004: Novelty and HARD.

In Proceedings of the 13th Text REtrieval Conference (TREC’04).

[2] Maristella Agosti, Nicola Ferro, and Costantino Thanos. 2012. DESIRE 2011: Workshop on Data Infrastructures for

Supporting Information Retrieval Evaluation. SIGIR Forum 46, 1 (2012), 51–55.

[3] Maristella Agosti, Giorgio Maria Di Nunzio, and Nicola Ferro. 2007. Scientific data of an evaluation campaign: Do

we properly deal with them? In Proceedings of the Conference on Evaluation of Cross-Language Information Retrieval

Systems (CLEF’06). 11–20.

[4] Gianni Amati and Cornelis Joost Van Rijsbergen. 2002. Probabilistic models of information retrieval based on mea-

suring the divergence from randomness. ACM Trans. Info. Syst. 20, 4 (2002), 357–389.

[5] Jaime Arguello, Matt Crane, Fernando Diaz, Jimmy Lin, and Andrew Trotman. 2015. Report on the SIGIR 2015 work-

shop on Reproducibility, Inexplicability, and Generalizability of Results (RIGOR). SIGIR Forum 49, 2 (2015), 107–116.

[6] Timothy G. Armstrong, Alistair Moffat, William Webber, and Justin Zobel. 2009. EvaluatIR: An online tool for eval-

uating and comparing IR systems. In Proceedings of the 32nd Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR’09). 834.

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

16:18 P. Yang et al.

[7] Timothy G. Armstrong, Alistair Moffat, William Webber, and Justin Zobel. 2009. Improvements that don’t add up:

Ad-hoc retrieval results since 1998. In Proceedings of the 18th International Conference on Information and Knowledge

Management (CIKM’09). 601–610.

[8] Nima Asadi and Jimmy Lin. 2013. Effectiveness/efficiency tradeoffs for candidate generation in multi-stage retrieval

architectures. In Proceedings of the 36th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR’13). 997–1000.

[9] Leif Azzopardi, Matt Crane, Hui Fang, Grant Ingersoll, Jimmy Lin, Yashar Moshfeghi, Harrisen Scells, Peilin Yang,

and Guido Zuccon. 2017. The Lucene for Information Access and Retrieval Research (LIARR) workshop at SIGIR 2017.

In Proceedings of the 40th Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval (SIGIR’17). 1429–1430.

[10] Leif Azzopardi, Yashar Moshfeghi, Martin Halvey, Rami S. Alkhawaldeh, Krisztian Balog, Emanuele Di Buccio, Diego

Ceccarelli, Juan M. Fernández-Luna, Charlie Hull, Jake Mannix, and Sauparna Palchowdhury. 2017. Lucene4IR: De-

veloping information retrieval evaluation resources using Lucene. SIGIR Forum 50, 2 (2017), 58–75.

[11] Michel Beigbeder and Wai Gen Yee. 2015. OSWIR 2005 Workshop, Final Report.

[12] Paolo Boldi and Sebastiano Vigna. 2005. MG4J at TREC 2005. In Proceedings of the 14th Text REtrieval Conference

(TREC’05).

[13] Chris Buckley. 1985. Implementation of the SMART Information Retrieval System. Department of Computer Science

TR 85-686. Cornell University.

[14] Ben Carterette, Evangelos Kanoulas, Mark Hall, and Paul Clough. 2014. Overview of the TREC 2014 session track. In

Proceedings of the 23rd Text REtrieval Conference (TREC’14).

[15] Marc-Allen Cartright, Samuel Huston, and Henry Feild. 2012. Galago: A modular distributed processing and retrieval

system. In Proceedings of the SIGIR 2012 Workshop on Open Source Information Retrieval. 25–31.

[16] Ruey-Cheng Chen, Luke Gallagher, Roi Blanco, and J. Shane Culpepper. 2017. Efficient cost-aware cascade ranking

in multi-stage retrieval. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR’17). 445–454.

[17] Charles L. A. Clarke, J. Shane Culpepper, and Alistair Moffat. 2016. Assessing efficiency–effectiveness tradeoffs in

multi-stage retrieval systems without using relevance judgments. Info. Retriev. 19, 4 (2016), 351–377.

[18] Stéphane Clinchant and Eric Gaussier. 2010. Information-based models for ad hoc IR. In Proceedings of the 33rd Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’10). 234–241.

[19] Matt Crane. 2018. Questionable answers in question answering research: Reproducibility and variability of published

results. Trans. Assoc. Comput. Linguist. 6 (2018), 241–252.

[20] Jens Dittrich and Patrick Bender. 2015. Janiform intra-document analytics for reproducible research. Proc. VLDB

Endow. 8, 12 (2015), 1972–1975.

[21] Chris Drummond. 2009. Replicability is not reproducibility: Nor is it good science. In Proceedings of the 4th Workshop

on Evaluation Methods for Machine Learning at ICML.

[22] Hui Fang, Hao Wu, Peilin Yang, and ChengXiang Zhai. 2014. VIRLab: A web-based virtual lab for learning and study-

ing information retrieval models. In Proceedings of the 37th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR’14). 1249–1250.

[23] Hui Fang and ChengXiang Zhai. 2005. An exploration of axiomatic approaches to information retrieval. In Proceed-

ings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR’05). 480–487.

[24] Nicola Ferro, Norbert Fuhr, Kalervo Järvelin, Noriko Kando, Matthias Lippold, and Justin Zobel. 2016. Increas-

ing reproducibility in IR: Findings from the Dagstuhl seminar on “reproducibility of data-oriented experiments in

e-science.” SIGIR Forum 50, 1 (2016), 68–82.

[25] Bill Howe. 2012. Virtual appliances, cloud computing, and reproducible research. Comput. Sci. Eng. 14, 4 (2012), 36–41.

[26] Sadegh Kharazmi, Falk Scholer, David Vallet, and Mark Sanderson. 2016. Examining additivity and weak baselines.

ACM Trans. Info. Syst. 34, 4 (2016), Article No. 23.

[27] Victor Lavrenko and W. Bruce Croft. 2001. Relevance-based language models. In Proceedings of the 24th Annual In-

ternational ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’01). 120–127.

[28] Hang Li. 2014. Learning to Rank for Information Retrieval and Natural Language Processing. Morgan & Claypool

Publishers.

[29] Jimmy Lin, Matt Crane, Andrew Trotman, Jamie Callan, Ishan Chattopadhyaya, John Foley, Grant Ingersoll, Craig

Macdonald, and Sebastiano Vigna. 2016. Toward reproducible baselines: Open-Source IR Reproducibility Challenge.

In Proceedings of the 38th European Conference on Information Retrieval (ECIR’16). 408–420.

[30] Jimmy Lin, Donald Metzler, Tamer Elsayed, and Lidan Wang. 2009. Of Ivory and Smurfs: Loxodontan MapReduce

experiments for web search. In Proceedings of the 18th Text REtrieval Conference (TREC’09).

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

Anserini: Reproducible Ranking Baselines Using Lucene 16:19

[31] Jimmy Lin and Andrew Trotman. 2015. Anytime ranking for impact-ordered indexes. In Proceedings of the ACM

International Conference on the Theory of Information Retrieval (ICTIR’15). 301–304.

[32] Jimmy Lin and Peilin Yang. 2018. Repeatability corner cases in document ranking: The impact of score ties.

arXiv:1807.05798.

[33] Shichen Liu, Fei Xiao, Wenwu Ou, and Luo Si. 2017. Cascade ranking for operational e-commerce search. In Pro-

ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’17).

1557–1565.

[34] Yuanhua Lv and ChengXiang Zhai. 2011. Lower-bounding term frequency normalization. In Proceedings of the 20th

ACM International Conference on Information and Knowledge Management (CIKM’11). 7–16.

[35] Craig Macdonald, Richard McCreadie, Rodrygo L. T. Santos, and Iadh Ounis. 2012. From puppy to maturity: Experi-

ences in developing Terrier. In Proceedings of the SIGIR 2012 Workshop on Open Source Information Retrieval. 60–63.

[36] Irina Matveeva, Chris Burges, Timo Burkard, Andy Laucius, and Leon Wong. 2006. High accuracy retrieval with mul-

tiple nested ranker. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR’06). 437–444.

[37] Jill P. Mesirov. 2010. Accessible reproducible research. Science 327, 5964 (2010), 415–416.

[38] Donald Metzler and W. Bruce Croft. 2004. Combining the language model and inference network approaches to

retrieval. Info. Process. Manage. 40, 5 (2004), 735–750.

[39] Donald Metzler, Trevor Strohman, Howard Turtle, and W. Bruce Croft. 2004. Indri at TREC 2004: Terabyte track. In

Proceedings of the 13th Text REtrieval Conference (TREC’04).

[40] Bhaskar Mitra and Nick Craswell. 2017. Neural models for information retrieval. arXiv:1705.01509v1.

[41] Hannes Mühleisen, Thaer Samar, Jimmy Lin, and Arjen de Vries. 2014. Old dogs are great at new tricks: Column stores

for IR prototyping. In Proceedings of the 37th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR’14). 863–866.

[42] Iadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald, and Christina Lioma. 2006. Terrier: A high

performance and scalable information retrieval platform. In Proceedings of the SIGIR 2006 Workshop on Open Source

Information Retrieval.

[43] Jan Pedersen. 2010. Query understanding at Bing. In Industry Track Keynote at the 33rd Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR’10).

[44] Roger D. Peng. 2011. Reproducible research in computational science. Science 334, 6060 (2011), 1226–1227.

[45] Jay M. Ponte and W. Bruce Croft. 1998. A language modeling approach to information retrieval. In Proceedings of

the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’98).

275–281.

[46] Karthik Ram. 2013. Git can facilitate greater reproducibility and increased transparency in science. Source Code Biol.

Med. 8, 7 (2013).

[47] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu, and Mike Gatford. 1994. Okapi at

TREC-3. In Proceedings of the 3rd Text REtrieval Conference (TREC’94). 109–126.

[48] Royal Sequiera, Gaurav Baruah, Zhucheng Tu, Salman Mohammed, Jinfeng Rao, Haotian Zhang, and Jimmy Lin. 2017.

Exploring the effectiveness of convolutional neural networks for answer selection in end-to-end question answering.

In Proceedings of the SIGIR 2017 Workshop on Neural Information Retrieval (Neu-IR’17).

[49] Nicola Tonellotto, Craig Macdonald, and Iadh Ounis. 2013. Efficient and effective retrieval using selective pruning.

In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (WSDM’13). 63–72.

[50] Andrew Trotman, Charles L. A. Clarke, Iadh Ounis, Shane Culpepper, Marc-Allen Cartright, and Shlomo Geva. 2012.

Open Source Information Retrieval: A report on the SIGIR 2012 workshop. SIGIR Forum 46, 2 (2012), 95–101.

[51] Andrew Trotman, Xiang-Fei Jia, and Matt Crane. 2012. Towards an efficient and effective search engine. In Proceedings

of the SIGIR 2012 Workshop on Open Source Information Retrieval. 40–47.

[52] Andrew Trotman, Antti Puurula, and Blake Burgess. 2014. Improvements to BM25 and language models examined.

In Proceedings of the 2014 Australasian Document Computing Symposium (ADCS’14). 58–66.

[53] Zhucheng Tu, Matt Crane, Royal Sequiera, Junchen Zhang, and Jimmy Lin. 2017. An exploration of approaches to

integrating neural reranking models in multi-stage ranking architectures. In Proceedings of the SIGIR 2017 Workshop

on Neural Information Retrieval (Neu-IR’17).

[54] Howard Turtle, Yatish Hegde, and Steven A. Rowe. 2012. Yet another comparison of Lucene and Indri performance.

In Proceedings of the SIGIR 2012 Workshop on Open Source Information Retrieval. 64–67.

[55] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A cascade ranking model for efficient ranked retrieval. In Pro-

ceedings of the 34th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR’11). 105–114.

[56] Peilin Yang and Hui Fang. 2016. A reproducibility study of information retrieval models. In Proceedings of the 2nd

ACM International Conference on the Theory of Information Retrieval (ICTIR’16). 77–86.

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

16:20 P. Yang et al.

[57] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the use of Lucene for information retrieval research.

In Proceedings of the 40th Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval (SIGIR’17). 1253–1256.

[58] Wai Gen Yee, Michel Beigbeder, and Wray Buntine. 2006. SIGIR06 workshop report: Open source information retrieval

systems (OSIR06). SIGIR Forum 40, 2 (2006), 61–65.

[59] Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for language models applied to information

retrieval. ACM Trans. Info. Syst. 22, 2 (2004), 179–214.

[60] Stefan Büttcher, Charles L. A. Clarke, and Gordon V. Cormack. 2010. Information Retrieval: Implementing and Evalu-

ating Search Engines. MIT Press.

[61] Bodo Billerbeck, Adam Cannane, Abhijit Chattaraj, Nicholas Lester, William Webber, Hugh E. Williams, John Yiannis,

and Justin Zobel. 2004. RMIT University at TREC 2004. In Proceedings of the 13th Text REtrieval Conference (TREC’04).

Received October 2017; revised April 2018; accepted July 2018

ACM Journal of Data and Information Quality, Vol. 10, No. 4, Article 16. Publication date: October 2018.

