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Crawling Suggestion Candidates 

• Source : Yelp 
• Strategy : At most 100 pages per top category (arts, 

shopping, food and etc.) 
• Total number of crawled suggestions : 105,871 

– Average number of suggestions per context : 2,117 
– Max: 8410 (i.e., Washington D.C.) 
– Min: 302 (i.e., Crestview) 
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Proceedings of the 4th International Conference on 
the Theory of Information Retrieval, 2013. (ICTIR’13) 
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Description-based Profile Modeling  
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Central Park is a public 
park … 
… remarkable food in 
unique environment  
 
… largest art museum in 
the US … 
… Jazz music … 

1. Liberty Bell 

2. Operison Hotel 

America's most historic areas … Downtown 
public art circuit tour .. 

At Operison the focus is on detail - and the 
guest is always at the center of attention.  

Can not be 
generalized!  
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From “What” to “Why” 

New York City 

Assumption:  
 A user’s profile is constructed based 
 on reviews of other users who share 
 the similar opinions on the example 
 suggestions.  
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… in the center downtown 
of NYC … 
Japanese inspired decor, 
dim lighting, and a clean 
setting … 
… it is fantastic but some 
areas are crowd … 
The cocktails are very well 
crafted 

… A little bit far away from downtown… 
… it is crowd and you need to take bus to there … 

… The hotel is very close to the train station … 
The neat and clean environment is desirable… 

1. Operison Hotel  

2. Liberty Bell 
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Representation of User Profiles 

Unique Full 
Reviews Unique terms from the original review excluding stop words 

Review 
Summaries The review summaries generated by Opinosis [1]. 
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… From the stunning architecture to the croissant and latte 
served up in the food court downstairs. Go to this place and 
ask why all train stations can't be like this! 
Wow, over 100 tracks. Unbelievable architecture. Shopping, 
food. Etc. it is amazing. We ate at the oyster bar last time 
and that was a treat. The oyster pots are quite something. 

 

Original review 

K. Ganesan, C. Zhai, and J. Han. Opinosis: a graph-based approach to abstractive summarization of highly redundant 
opinions. In Proceedings of the 23rd International Conference on Computational Linguistics, COLING ’10, pages 340–348, 
Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. 



Ranking candidate suggestions 
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Why the user dislikes  
example suggestions?  

Why the user likes 
example suggestions?  

Candidate 
Suggestion 

Why other users dislike 
candidate suggestions?  

Why other users like 
candidate suggestions?  

Positive profile 

Negative profile 

Positive reviews 

Negative reviews 
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Preliminary Results on last year’s data:  
Opinion-based methods are more effective.  
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Personalized Description Generation 

• Opening Sentence 
• “Official” Introduction 
• Highlighted Reviews 
• Concluding Sentence 
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What is this place?  
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Why is it recommended for YOU?  

Example suggestions Web site Category Reviews 
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Why is it recommended for YOU?  

Example suggestions Web site Category Reviews 

User Candidate suggestion 

Personalized Description Generation 



"The Olive Room is a bar. HERE ARE THE 
DESCRIPTIONS FROM ITS WEBSITE: Here at the 
olive room, you will receive the finest cuisine 
montgomery has to offer.  
HERE ARE REVIEWS FROM OTHER PEOPLE: If you 
are looking for a unique dining experience, with 
excellent food, service, location, and outstanding 
ambiance, look no further!  
THIS PLACE IS SIMILAR TO OTHER PLACE(S) YOU 
LIKED, i.e. Tria Wine Room." 
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An Example of Generated Description 
What is this place?  

Why do other people like it?  Why is it recommended for YOU?  



Description of Our Two Runs 
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Runs User Profile Description 

UDInfoCS1 Review Summaries 

Opening Sentence 
+ 

Meta Description 
+ 

Web Site Sentences 
+ 

Highlighted Reviews 
+ 

Concluding Sentence 

UDInfoCS2 Unique Full Review 

Opening Sentence 
+ 

Meta Description 
+ 

Highlighted Reviews 
+ 

Concluding Sentence 
 



Effectiveness of the runs  
(from the CS overview paper) 
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Effectiveness of description generation  
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UDInfoCS1 UDInfoCS2 

Accuracy  0.803 0.811 

Precision 0.904 0.902 

Recall 0.808 0.821 

One observation regarding relevance assessment:  
 
Among the 569 suggestions returned by both runs,  
27.59% (157) of them have inconsistent relevance 
labels for their websites, and 12.13% (69) of them have 
inconsistent relevance status.  

 



Thank you! 
 
Questions?  
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