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ABSTRACT
So�ware toolkits play an essential role in information retrieval
research. Most open-source toolkits developed by academics are de-
signed to facilitate the evaluation of retrieval models over standard
test collections. E�orts are generally directed toward be�er ranking
and less a�ention is usually given to scalability and other opera-
tional considerations. On the other hand, Lucene has become the de
facto platform in industry for building search applications (outside
a small number of companies that deploy custom infrastructure).
Compared to academic IR toolkits, Lucene can handle heteroge-
neous web collections at scale, but lacks systematic support for
evaluation over standard test collections. �is paper introduces
Anserini, a new information retrieval toolkit that aims to provide
the best of both worlds, to be�er align information retrieval practice
and research. Anserini provides wrappers and extensions on top of
core Lucene libraries that allow researchers to use more intuitive
APIs to accomplish common research tasks. Our initial e�orts have
focused on three functionalities: scalable, multi-threaded inverted
indexing to handle modern web-scale collections, streamlined IR
evaluation for ad hoc retrieval on standard test collections, and
an extensible architecture for multi-stage ranking. Anserini ships
with support for many TREC test collections, providing a conve-
nient way to replicate competitive baselines right out of the box.
Experiments verify that our system is both e�cient and e�ective,
providing a solid foundation to support future research.

1 INTRODUCTION
Information retrieval researchers have a long history of developing,
sharing, and using so�ware toolkits to support their work. Over
the past several decades, various IR toolkits have been built to aid in
the development of new retrieval models, to test hypotheses about
information seeking, and to validate new evaluation methodologies.
As the �eld moves forward, IR toolkits are expected to keep up
with emerging requirements such as the ability to handle large
web collections and new data formats. �e growing complexity
of modern so�ware ecosystems and the resource constraints most
academic research groups operate under make maintaining open-
source toolkits a constant struggle.
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Most IR toolkits developed by academics, such as Indri,1 Galago,2
and Terrier3 were primarily designed to facilitate evaluation over
standard test collections from evaluation forums such as TREC,
CLEF, NTCIR, etc. In many cases, scalability took a back seat to
e�orts around improving retrieval models, and thus these systems
o�en struggle to scale to modern web collection. As an example, the
ClueWeb12 collection4 contains 733 million web pages, totaling 5.54
TB compressed (or 27.3 TB uncompressed). �e standard practice
for workingwith this collection, as exempli�ed by the infrastructure
built for the TREC 2014 Session Track [4], is to separately index
partitions of the collection and then build a distributed broker
architecture that integrates results from each partition. In general,
working with web-scale collections using existing academic IR
toolkits is time- and resource-intensive, even for basic tasks.

With the exception of a small number of companies (e.g., com-
mercial web search engines), the open-source Lucene system5 and
its derivatives such as Solr and Elasticsearch (for convenience, we
simply refer to as “Lucene” collectively in this paper) have become
the de facto platform for deploying search applications in industry.
Examples include LinkedIn, Twi�er, Bloomberg, as well as a num-
ber of online retailers and many large companies in the �nancial
services space. Despite its undeniable operational success, a large
user base, and a vibrant community of contributors, Lucene is not
well suited to information retrieval research. For many reasons,
including poor documentation of system internals and a number of
unintuitive abstractions, Lucene is not as widely used for research
as academic toolkits such as Indri or Terrier.

In this paper, we describe our e�orts in developing a new open-
source information retrieval toolkit called Anserini that builds on
Lucene.6 We aim to bridge the gap described above that sepa-
rates information retrieval research from the practice of building
real-world search applications. Anserini provides wrappers and
extensions on top of core Lucene libraries that allow researchers
to use more intuitive APIs to accomplish common research tasks.
Our initial e�orts have focused on three functionalities: scalable,
multi-threaded inverted indexing to handle modern web collections,
streamlined IR evaluation for ad hoc retrieval on standard test col-
lections, and an extensible architecture for multi-stage ranking.
Anserini ships with support for standard TREC test collections, pro-
viding a convenient way to replicate competitive baselines “right
out of the box”, supporting the community’s aspirations toward
reproducible research [1, 7, 8, 10, 16, 18].

1h�p://www.lemurproject.org/indri/
2h�p://www.lemurproject.org/galago.php
3h�p://terrier.org/
4h�p://www.lemurproject.org/clueweb12/
5h�ps://lucene.apache.org/
6h�p://anserini.io/
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We experimentally evaluate the e�ciency and e�ectiveness of
Anserini on a number of standard test collections. In terms of
indexing performance, it is able to handle the largest research web
collection available today with ease on a single modern server. We
observe be�er indexing performance compared to Indri, a popular
choice among researchers today. In terms of retrieval, we also �nd
that Anserini is not only faster than Indri, but returns rankings that
are comparable in quality. In other words, Anserini is faster and
just as good. We present the case that Anserini should be adopted
as the toolkit of choice for information retrieval researchers.

2 ANSERINI OVERVIEW
2.1 Motivation
Despite its popularity in industry and broad adoption for opera-
tional search deployments, Lucene remains under-utilized in infor-
mation retrieval research. We begin with some high-level discus-
sions of why we believe this might be so to motivate our e�orts in
building Anserini.

From the very beginning, Lucene was wri�en for “real world”
search applications, not with researchers in mind. For the most
part, its developers targeted an audience that mostly used search
engines as black boxes, as opposed to researchers that required
access to ranking internals such as scoring models, mechanisms
for postings traversal, etc. Because of the target user population,
documentation for Lucene internals has always been quite poor,
especially in keeping up with the relatively rapid pace at which
the developer community has been releasing improved versions of
the so�ware. Access to these internals is exactly what information
retrieval researchers need for their studies, and therefore poor
documentation has been a barrier to entry.

To further compound this issue, the internal APIs in Lucene
are not organized in a way that would be intuitive to most IR re-
searchers, with class names that are not indicative of functionality
and many levels of indirection. �is is not an issue for “black box”
users of Lucene, but presents a hurdle for information retrieval re-
searchers who desire access to system internals. As an example, the
code to open up a Lucene index and to traverse postings program-
matically (without invoking the scoring function) is unnecessarily
complex and involves dispatching to several intermediate classes
along the way. Some researchers have the impression that Lucene
is di�cult to use, and indeed there is some truth to this, especially
with respect to low-level abstractions.

Another side e�ect of Lucene’s focus on “black box” search is
that it has severely lagged behind in the implementation of mod-
ern ranking functions. For the longest time, the default scoring
model was an ad hoc variant of tf-idf. Okapi BM25 was not added to
Lucene until 2011,7 more than a decade a�er it gained widespread
adoption in the research community as being more e�ective than
tf-idf variants. �is lag in adopting “research best practices” has
contributed to the perception that Lucene is not e�ective and ill-
suited for information retrieval research. However, this perception
is no longer accurate today. Lucene comes with implementations
of modern baseline retrieval models, and we show that the e�ec-
tiveness of Lucene’s implementations is at least as good as those
o�ered by academic IR toolkits (see Section 3).
7h�ps://issues.apache.org/jira/browse/LUCENE-2959

Finally, because Lucene is wri�en in Java, there is sometimes
the perception that it is slow and ine�cient, particularly when
scaling up to modern web collections. Developers o�en point to
the managed memory environment of the Java Virtual Machine
(JVM) as not being conducive to e�cient low-level implementations
of search engine internals. We experimentally show that this is
de�nitely not true (see Section 3). �e open-source community has
devoted substantial e�ort to optimizing the performance of Lucene
and taking advantage of today’s multi-core processors. It is capable
of handling large web collections on a single server with ease.

�e goal of Anserini is to align the practice of building search
applications with research in information retrieval. Colloquially
speaking, our toolkit aims to smooth the “rough edges” around
Lucene for the purposes of information retrieval research. It is
not our goal to replace or to reimplement Lucene, but rather to
facilitate its use for research by presenting as gentle a learning
curve as possible to newcomers.

2.2 Main Components
Anserini components fall into two categories: wrappers and exten-
sions. Wrappers provide APIs that leverage core Lucene library
components to accomplish speci�c tasks. �ey are tightly inte-
grated with “core” Lucene and in some cases, represent custom
implementations of existing Lucene APIs. Extensions, on the other
hand, are components that are distinct from Lucene and more
loosely coupled: these may represent our own implementations or
connectors to third-party libraries.

Multi-threaded indexing (wrapper). Inverted indexing is one
of the most fundamental tasks in information retrieval and the
starting point of many research studies. In working with large web
collections, it is imperative that indexing operations are e�cient and
scalable. While academic researchers have a�empted to address
this issue via MapReduce and related frameworks [5, 11], these
solutions impose the burden of requiring clusters and additional
so�ware infrastructure.

Lucene supports multi-threaded indexing, and as we experimen-
tally show (Section 3), it is able to scale up to large web collections
on a single commodity server. �e biggest issue, however, is that
Lucene itself only provides access to a collection of indexing com-
ponents that researchers need to assemble together to build an
end-to-end indexer. For example, the developer would need to
write from scratch custom document processing pipelines, code
for managing individual indexing threads, and implementations of
load balancing and synchronization procedures.

We address these issues in Anserini by providing abstractions for
document collections that an IR researcher would be comfortable
with, as well as the implementation of an e�cient, high-throughput,
multi-threaded indexer that takes advantage of these abstractions.
Anserini models collections as comprised of individual segments
(for example, the ClueWeb12 collection is comprised of a number of
compressedWARC�les) and provides implementations for common
document formats—for parsing TREC-style XML documents, web
pages stored inWARCs, tweets in JSON format, etc. In fact, Anserini
ships with the ability to index many TREC collections “right out of
the box”. �is greatly reduces the learning curve for researchers to
get started with Lucene.

https://issues.apache.org/jira/browse/LUCENE-2959


Table 1: Indexing performance of Anserini and Indri on smaller collections using 16 threads on a modest commodity server.

Anserini (count) Anserini (pos) Anserini (doc) Indri
Collection docs terms time size time size time size time size
Disk12 742k 219m 00:01:24 199MB 00:01:44 512MB 00:03:09 2.5GB 00:12:28 2.5GB
Disk45 528k 175m 00:01:13 166MB 00:01:33 423MB 00:02:51 2.1GB 00:06:55 1.9GB
AQUAINT 1.03m 318m 00:01:53 305MB 00:02:10 734MB 00:04:32 3.8GB 00:17:36 3.9GB
WT2G 246k 182m 00:02:21 143MB 00:02:55 437MB 00:04:24 2.3GB 00:07:25 2.2GB
WT10G 1.69m 752m 00:04:55 708MB 00:05:05 2.9GB 00:09:51 12GB 00:42:51 9.6GB
Gov2 25.2m 17.3b 01:16:32 11GB 02:32:43 38GB 06:52:35 331GB 14:51:12 215GB

Table 2: Indexing performance of Anserini on web collec-
tions using 88 threads on a high-end server.

Anserini (count) Anserini (pos)
Collection docs terms time size time size
CW09b 50m 31b 00:42 28GB 01:13 75GB
CW09 504m 268b 07:32 254GB 12:18 649GB
CW12b13 52m 31b 00:57 29GB 01:25 76GB
CW12 733m 429b 17:01 376GB 22:21 1.1TB

Streamlined IR evaluation (extension). Test collections play an
important role in information retrieval research, and a substan-
tial amount of research activity in improving ranking models is
focused around ad hoc retrieval runs. A research toolkit should
make this “inner loop” of IR research as easy as possible. Since
Lucene was not originally designed for researchers, support for
running experiments on standard test collections is largely missing.
Anserini �lls this gap by implementing missing features: parsers
for di�erent query formats, a uni�ed driver program for ad hoc
experiments that outputs standard trec eval format, etc. For con-
venience, existing TREC topics and qrels are included directly in
our code repository—once again, reducing the learning curve for
researchers to get started with Lucene.

�ere are two main uses for this feature in Anserini: First, our
toolkit provides an easy way for researchers to replicate baselines
of standard retrieval models such as BM25 and query likelihood.
Armstrong et al. [2] previously identi�ed the prevalent problem of
weak baselines in experimental IR papers. Lin et al. [10] further
observed that authors are o�en vague about the baseline parameter
se�ings and the implementations they use. For example, Mühleisen
et al. [13] reported large di�erences in e�ectiveness across four
systems that all purport to implement BM25. Trotman et al. [15]
pointed out that BM25 and query likelihood with Dirichlet priors
can actually refer to at least half a dozen variants, and in some
cases, di�erences in e�ectiveness are statistically signi�cant. �ere
is substantial community interest in engaging with reproducibility-
related issues [1, 8], and Anserini contributes to this discussion.
Our proposed solution is to have widely-available baselines that
are both competitive in e�ectiveness and easy to replicate. It is our
hope that Anserini can �ll this role.

Second, an easy-to-use baseline retrieval component in Anserini
provides the starting point for additional ranking extensions. In
particular, we advocate a multi-stage ranking architecture [3, 6, 14,
17] so that researchers will not need to directly work with native
Lucene scoring APIs. �at is, researchers should take advantage of
Anserini APIs that generate an initial document ranking and hooks

for feature extraction to build subsequent reranking stages. �is,
in fact, is the common architecture used in commercial web search
engines today to support learning to rank [14].

Relevance feedback (extension). Relevance feedback techniques
provide robust solutions to the vocabulary mismatch problem be-
tween expressions of user information needs and relevant docu-
ments. Anserini provides a reference implementation of the RM3
variant of relevance models [9], built as a reranking module in the
multi-stage architecture described above. �us, our implementa-
tion is useful not only as a baseline for comparing query expansion
techniques, but provides an example of how reranking extensions
can be implemented in Anserini.

3 EVALUATION
We describe experiments to support three claims about Anserini
and the use of Lucene for information retrieval research. First, that
Anserini is highly scalable and able to e�ciently index large web
collections. Second, that Anserini is similarly e�cient in searching
these collections and ranking documents using standard baseline
models. Finally, Anserini is able to achieve scalable indexing and
e�cient retrieval without compromising ranking e�ectiveness.

�e indexing performance of Anserini on a number of smaller
and older collections is shown in Table 1. �ese experiments were
conducted on a server with dual AMD Opteron 6128 processors
(2.0GHz, 8 cores) with 40GB RAM running CentOS 6.8. �is ma-
chine can be characterized as an old, modest commodity server. All
experiments were run on an otherwise idle machine. With Anserini,
we used 16 threads for indexing and we report results from three
di�erent index con�gurations: count indexes where only term fre-
quency information is stored (count), positional indexes that also
store term positions (pos), and positional indexes that also store
the raw documents and parsed document vectors (doc). For each
condition, we report the indexing time in HH:MM:SS (averaged
over two trials) as well as the index size. �e size of each collection
is also shown for reference. As a comparison condition, we indexed
the same collections using Indri 5.9 on the same machine.

In Table 2, we report indexing performance for larger web col-
lections on a server with dual Intel Xeon E5-2699 v4 processors
(2.2GHz, 22 cores) and 1 TB RAM running Ubuntu 16.04. �e table
rows indicate di�erent collections: CW09b refers to the ClueWeb09
(category B) web crawl, CW09 refers to all English pages in the
ClueWeb09 web crawl, CW12b13 refers to the smaller ClueWeb12-
B13 web crawl, and CW12 refers to the complete ClueWeb12 web
crawl. Due to the size of the collections, we only report the count
and positional index con�gurations. For these experiments, we used



Table 3: Retrieval e�ciency for Terabyte 06 e�ciency
queries on Gov2, using a single thread.

Latency (ms) �roughput (qps)
Indri 2403 0.42

Anserini 382 2.61

Table 4: E�ectiveness comparisons betweenAnserini and In-
dri on standard TREC test collections.

Collection Disk12 Disk45 WT2G WT10G Gov2
�eries 51-200 301-450 401-450 451-550 701-850

601-700
BM25 (I) 0.2040 0.2478 0.3152 0.1955 0.2970
BM25 (A) 0.2267 0.2500 0.3015 0.1981 0.3030
LM (I) 0.2269 0.2516 0.3116 0.1915 0.2995
LM (A) 0.2232 0.2465 0.2922 0.2015 0.2951

88 threads on an otherwise idle machine; indexing time is reported
in HH:MM (averaged over two trials). On this server, we are able to
index all of ClueWeb12, one of the largest collections available to
researchers today, in less than a day! As seen from Table 1, even on
an older server, the indexing performance of Lucene is impressive.
Compared to academic toolkits, Lucene does not appear to have
any trouble scaling to large modern web collections.

Our next set of experiments were conducted on the Gov2 col-
lection with Terabyte 06 e�ciency queries. We issued all 100,000
queries sequentially against both the Anserini and Indri indexes
on the slower AMD Opteron server. Results are shown in Table 3,
which reports latency (ms) and throughput (queries per second,
or qps). In this experiment, we used only a single query thread,
and therefore do not take advantage of Lucene’s ability to execute
queries in parallel on multiple threads (so in our case, throughput
is simply the inverse of latency). We see from these experiments
that Lucene is roughly six times faster than Indri.

Finally, we compared the retrieval e�ectiveness of Anserini and
Indri. For Indri we refer to the RISE work of Yang and Fang [18], as
they �ne-tuned model parameters to achieve optimal e�ectiveness.
We considered two baseline ranking models: Okapi BM25 (BM25)
and query likelihood with Dirichlet priors (LM). For Anserini, we
removed stopwords (the default) and tuned parameters as follows:
for BM25, k = 0.9 and b ∈ [0, 1] in increments of 0.1; for LM,
µ ∈ [0, 5000] in increments of 500. Results on standard TREC
collections and queries are shown in Table 4, where (I) refers to
Indri and (A) refers to Anserini. We see that e�ectiveness results
are comparable between the two systems.

In summary, our experiments show that Anserini is at least as
good as Indri in terms of e�ectiveness, and much faster in both
indexing and retrieval. �ese results are consistent with �ndings
from the recent Open-Source IR Reproducibility Challenge [10]. To-
gether, empirical evidence presents a compelling case for adopting
Lucene for information retrieval research.

4 CONCLUSIONS AND FUTUREWORK
Our message to the information retrieval community is that Lucene
is e�cient and scalable without compromising e�ectiveness. Fur-
thermore, Lucene has the bene�t of a large user community and

broad adoption in industry. Anserini smooths over the “rough
edges” of using Lucene for information retrieval research by pro-
viding wrappers and extensions that simplify common tasks such
as indexing large research web collections and performing standard
ad hoc retrieval runs. We hope that our toolkit will help to be�er
align the research and practice of information retrieval.

Broadly characterized, Anserini provides the foundation for an
IR research toolkit, but currently lacks features that one would
associate with cu�ing-edge research. Ongoing work is focused on
addressing this issue, as we are actively exploring retrieval models
based on deep learning [12]. E�orts include a�empts to replicate
existing neural retrieval models within our framework. Given the
existence of many deep learning toolkits (Torch, TensorFlow, etc.),
it does not make sense to reinvent the wheel. In this spirit, we
have been building connectors between Lucene and the PyTorch
deep learning toolkit. Moving forward, we anticipate substantial
continued interest at the intersection of deep learning and informa-
tion retrieval, and the multi-stage ranking architecture of Anserini
provides a natural integration point for future explorations.
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